TY - JOUR
T1 - Zanamivir Amidoxime- and N-Hydroxyguanidine-Based Prodrug Approaches to Tackle Poor Oral Bioavailability
AU - Schade, Dennis
AU - Kotthaus, Jürke
AU - Riebling, Lukas
AU - Kotthaus, Joscha
AU - Müller-Fielitz, Helge
AU - Raasch, Walter
AU - Hoffmann, Anja
AU - Schmidtke, Michaela
AU - Clement, Bernd
PY - 2015/9/1
Y1 - 2015/9/1
N2 - The neuraminidase (NA) inhibitor zanamivir (1) is potently active against a broad panel of influenza A and B strains, including mutant viruses, but suffers from pharmacokinetic (PK) shortcomings. Here, distinct prodrug approaches are described that aimed at overcoming zanamivir's lack of oral bioavailability. Lowering the high basicity of the 4-guanidino group in zanamivir and of a bioisosteric 4-acetamidine analog (5) by N-hydroxylation was deemed to be a plausible tactic. The carboxylic acid and glycerol side chain were also masked with different ester groups. The bioisosteric amidine 5 turned out to be potently active against a panel of H1N1 (IC50 = 2-10 nM) and H3N2 (IC50 = 5-10 nM) influenza A viruses (NA inhibition assay). In vitro PK studies showed that all prodrugs were highly soluble, exhibited low protein binding, and were bioactivated by N-reduction to the respective guanidines and amidines. The most promising prodrug candidates, amidoxime ester 7 and N-hydroxyguanidine ester 8, were subjected to in vivo bioavailability studies. Unfortunately, both prodrugs were not orally bioavailable to a convincing degree (F ≤ 3.7%, rats). This finding questions the general feasibility of improving the oral bioavailability of 1 by lipophilicity-increasing prodrug strategies, and suggests that intrinsic structural features represent key hurdles.
AB - The neuraminidase (NA) inhibitor zanamivir (1) is potently active against a broad panel of influenza A and B strains, including mutant viruses, but suffers from pharmacokinetic (PK) shortcomings. Here, distinct prodrug approaches are described that aimed at overcoming zanamivir's lack of oral bioavailability. Lowering the high basicity of the 4-guanidino group in zanamivir and of a bioisosteric 4-acetamidine analog (5) by N-hydroxylation was deemed to be a plausible tactic. The carboxylic acid and glycerol side chain were also masked with different ester groups. The bioisosteric amidine 5 turned out to be potently active against a panel of H1N1 (IC50 = 2-10 nM) and H3N2 (IC50 = 5-10 nM) influenza A viruses (NA inhibition assay). In vitro PK studies showed that all prodrugs were highly soluble, exhibited low protein binding, and were bioactivated by N-reduction to the respective guanidines and amidines. The most promising prodrug candidates, amidoxime ester 7 and N-hydroxyguanidine ester 8, were subjected to in vivo bioavailability studies. Unfortunately, both prodrugs were not orally bioavailable to a convincing degree (F ≤ 3.7%, rats). This finding questions the general feasibility of improving the oral bioavailability of 1 by lipophilicity-increasing prodrug strategies, and suggests that intrinsic structural features represent key hurdles.
UR - http://www.scopus.com/inward/record.url?scp=84939258930&partnerID=8YFLogxK
U2 - 10.1002/jps.24508
DO - 10.1002/jps.24508
M3 - Journal articles
C2 - 26037932
AN - SCOPUS:84939258930
SN - 0022-3549
VL - 104
SP - 3208
EP - 3219
JO - Journal of Pharmaceutical Sciences
JF - Journal of Pharmaceutical Sciences
IS - 9
ER -