Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state

Norbert Linz, Sebastian Freidank, Xiao Xuan Liang, Hannes Vogelmann, Thomas Trickl*, Alfred Vogel

*Corresponding author for this work
13 Citations (Scopus)

Abstract

Investigation of the wavelength dependence (725-1025 nm) of the threshold for nanosecond optical breakdown in water revealed steps consistent with breakdown initiation by multiphoton ionization, with an initiation energy of about 6.6 eV. This value is considerably smaller than the autoionization threshold of about 9.5 eV, which can be regarded as band gap relevant for avalanche ionization. Breakdown initiation is likely to occur via excitation of a valence band electron into a solvated state, followed by rapid excitation into the conduction band. Theoretical analysis based on these assumptions suggests that the seed electron density required for initiating avalanche ionization amounts to 2.5×1015cm-3 at 725nm and drops to 1.1×1012cm-3 at 1025 nm. These results demand changes of future breakdown modeling for water, including the use of a larger band gap than previously employed, the introduction of an intermediate energy level for initiation, and consideration of the wavelength dependence of seed electron density.

Original languageEnglish
Article number134114
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume91
Issue number13
ISSN1098-0121
DOIs
Publication statusPublished - 29.04.2015

Fingerprint

Dive into the research topics of 'Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state'. Together they form a unique fingerprint.

Cite this