Vibrational spectrum of the spin crossover complex [Fe(phen) 2(NCS)2] studied by IR and Raman spectroscopy, nuclear inelastic scattering and DFT calculations

Kate L. Ronayne, Hauke Paulsen*, Andreas Höfer, Andrew C. Dennis, Juliusz A. Wolny, Aleksandr I. Chumakov, Volker Schünemann, Heiner Winkler, Hartmut Spiering, Azzedine Bousseksou, Philipp Gütlich, Alfred X. Trautwein, John J. McGarvey

*Corresponding author for this work
60 Citations (Scopus)

Abstract

The vibrational modes of the low-spin and high-spin isomers of the spin crossover complex [Fe(phen)2(NCS)2] (phen = 1,10-phenanthroline) have been measured by IR and Raman spectroscopy and by nuclear inelastic scattering. The vibrational frequencies and normal modes and the IR and Raman intensities have been calculated by density functional methods. The vibrational entropy difference between the two isomers, ΔS vib, which is - together with the electronic entropy difference ΔSel - the driving force for the spin-transition, has been determined from the measured and from the calculated frequencies. The calculated difference (ΔSvib = 57-70 J mol-1 K-1, depending on the method) is in qualitative agreement with experimental values (20-36 J mol-1 K-1). Only the low energy vibrational modes (20% of the 147 modes of the free molecule) contribute to the entropy difference and about three quarters of the vibrational entropy difference are due to the 15 modes of the central FeN6 octahedron.

Original languageEnglish
JournalPhysical Chemistry Chemical Physics
Volume8
Issue number40
Pages (from-to)4685-4693
Number of pages9
ISSN1463-9076
DOIs
Publication statusPublished - 09.11.2006

Fingerprint

Dive into the research topics of 'Vibrational spectrum of the spin crossover complex [Fe(phen) 2(NCS)2] studied by IR and Raman spectroscopy, nuclear inelastic scattering and DFT calculations'. Together they form a unique fingerprint.

Cite this