Abstract
Räumlich-zeitliche 4D-Cine-MRT-Bilddaten werden in der klinischen Praxis zur Untersuchung der Herzbewegung eingesetzt. Um eine automatisierte Verarbeitung dieser Daten durch Segmentierungsoder Registrierungsverfahren zu gewährleisten, ist als erster Schritt üblicherweise die initiale Bestimmung von Position und Orientierung des Herzens notwendig. Hierfür wurden bisher sowohl einfache grauwertbasierte Verfahren als auch lernbasierte Verfahren vorgeschlagen. Da bisher Vergleiche zwischen Verfahren aus diesen beiden Kategorien fehlen, erfolgt in diesem Beitrag ein quantitativer Vergleich zwischen einem klassisches Verfahren basierend auf der Untersuchung von zeitlichen Grauwertvarianzen und einer lernbasierten Hough Forest-Methode zur Detektion von multiplen Landmarken. Die Ergebnisse unserer Evaluation anhand von 10 4D-Cine-MRT-Bilddaten zeigen bezüglich der Initialisierungsgenauigkeit keine signifikanten Unterschiede zwischen beiden Verfahren.
Original language | German |
---|---|
Title of host publication | Bildverarbeitung für die Medizin 2017 |
Editors | K.H. Maier-Hein, T.M. Deserno, H. Handels, T. Tolxdorff |
Number of pages | 6 |
Publisher | Springer Vieweg, Berlin Heidelberg |
Publication date | 01.03.2017 |
Edition | 1 |
Pages | 293-298 |
ISBN (Print) | 978-3-662-54344-3 |
ISBN (Electronic) | 978-3-662-54345-0 |
DOIs | |
Publication status | Published - 01.03.2017 |
Event | Bildverarbeitung für die Medizin 2017 - Heidelberg, Germany Duration: 12.03.2017 → 14.03.2017 |