Transgenic mice for cGMP imaging

Martin Thunemann, Lai Wen, Matthias Hillenbrand, Angelos Vachaviolos, Susanne Feil, Thomas Ott, Xiaoxing Han, Dai Fukumura, Rakesh K. Jain, Michael Russwurm, Cor De Wit, Robert Feil*

*Corresponding author for this work
42 Citations (Scopus)


Rationale: Cyclic GMP (cGMP) is an important intracellular signaling molecule in the cardiovascular system, but its spatiotemporal dynamics in vivo is largely unknown. Objective: To generate and characterize transgenic mice expressing the fluorescence resonance energy transfer-based ratiometric cGMP sensor, cGMP indicator with an EC50 of 500 nmol/L (cGi500), in cardiovascular tissues. Methods and Results: Mouse lines with smooth muscle-specific or ubiquitous expression of cGi500 were generated by random transgenesis using an SM22α promoter fragment or by targeted integration of a Cre recombinase-activatable expression cassette driven by the cytomegalovirus early enhancer/chicken β-actin/β-globin promoter into the Rosa26 locus, respectively. Primary smooth muscle cells isolated from aorta, bladder, and colon of cGi500 mice showed strong sensor fluorescence. Basal cGMP concentrations were <100 nmol/L, whereas stimulation with cGMP-elevating agents such as 2-(N,N-diethylamino)-diazenolate-2-oxide diethylammonium salt (DEA/NO) or the natriuretic peptides, atrial natriuretic peptide, and C-type natriuretic peptide evoked fluorescence resonance energy transfer changes corresponding to cGMP peak concentrations of ≈3 μmol/L. However, different types of smooth muscle cells had different sensitivities of their cGMP responses to DEA/NO, atrial natriuretic peptide, and C-type natriuretic peptide. Robust nitric oxide-induced cGMP transients with peak concentrations of ≈1 to >3 μmol/L could also be monitored in blood vessels of the isolated retina and in the cremaster microcirculation of anesthetized mice. Moreover, with the use of a dorsal skinfold chamber model and multiphoton fluorescence resonance energy transfer microscopy, nitric oxide-stimulated vascular cGMP signals associated with vasodilation were detected in vivo in an acutely untouched preparation. Conclusions: These cGi500 transgenic mice permit the visualization of cardiovascular cGMP signals in live cells, tissues, and mice under normal and pathological conditions or during pharmacotherapy with cGMP-elevating drugs.

Original languageEnglish
JournalCirculation research
Issue number4
Pages (from-to)365-371
Number of pages7
Publication statusPublished - 02.08.2013

Research Areas and Centers

  • Academic Focus: Center for Brain, Behavior and Metabolism (CBBM)


Dive into the research topics of 'Transgenic mice for cGMP imaging'. Together they form a unique fingerprint.

Cite this