TY - JOUR
T1 - Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera
AU - Jiang, Yunshan
AU - Karpf, Sebastian
AU - Jalali, Bahram
N1 - Funding Information:
This work was performed at the Photonics Laboratory at UCLA. It was supported in part by the Office of Naval Research MURI programme on Optical Computing, and by the National Institutes of Health grant no. R21EB019645. S.K. acknowledges a postdoctoral research fellowship from the German Research Foundation (DFG, project KA 4354/1-1), a junior professorship with financial support by the state of Schleswig-Holstein (Excellence Chair Programmme by the universities of Kiel and Luebeck) and funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC 2167-390884018).
Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - The need for imaging and ranging in robotics has brought LiDAR (light detection and ranging) to the forefront of consumer technology1. Among various approaches, time-of-flight ranging sets the benchmark for robust operation due to illumination with high-energy pulses and direct detection. Conversely, spectrally scanning using tunable lasers is an inertia-free solution that offers fast scanning. The realization of a time-of-flight LiDAR with fast spectral scanning has not been possible because of difficulty in creating pulsed tunable sources. We demonstrate a wavelength-scanned time-of-flight LiDAR that realizes single-shot imaging and inertia-free scanning in one dimension with a rate of 1 MHz using a single laser and a single detector. We report two implementations of this concept, the first with a gain-switched supercontinuum source at 1,550 nm, and the second with a frequency-domain mode-locked laser at 1,060 nm. We show foveated imaging with both approaches as a potential solution to the big data predicament in three-dimensional imaging.
AB - The need for imaging and ranging in robotics has brought LiDAR (light detection and ranging) to the forefront of consumer technology1. Among various approaches, time-of-flight ranging sets the benchmark for robust operation due to illumination with high-energy pulses and direct detection. Conversely, spectrally scanning using tunable lasers is an inertia-free solution that offers fast scanning. The realization of a time-of-flight LiDAR with fast spectral scanning has not been possible because of difficulty in creating pulsed tunable sources. We demonstrate a wavelength-scanned time-of-flight LiDAR that realizes single-shot imaging and inertia-free scanning in one dimension with a rate of 1 MHz using a single laser and a single detector. We report two implementations of this concept, the first with a gain-switched supercontinuum source at 1,550 nm, and the second with a frequency-domain mode-locked laser at 1,060 nm. We show foveated imaging with both approaches as a potential solution to the big data predicament in three-dimensional imaging.
UR - http://www.scopus.com/inward/record.url?scp=85076008097&partnerID=8YFLogxK
U2 - 10.1038/s41566-019-0548-6
DO - 10.1038/s41566-019-0548-6
M3 - Letters
AN - SCOPUS:85076008097
SN - 1749-4885
VL - 14
SP - 14
EP - 18
JO - Nature Photonics
JF - Nature Photonics
IS - 1
ER -