TY - JOUR
T1 - Three-dimensional imaging in aortic disease by lighthouse transesophageal echocardiography using intravascular ultrasound catheters: Comparison to three-dimensional transesophageal echocardiography and three- dimensional intra-aortic ultrasound imaging
AU - Buck, T.
AU - Gorge, G.
AU - Hunold, P.
AU - Erbel, R.
N1 - Funding Information:
Supported in part by a grant from the “Ernst und Bertha Grimmke” Donation, Düsseldorf, Germany.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 1998
Y1 - 1998
N2 - Two-dimensional (2D) transesophageal echocardiography (TEE) and 2D intravascular ultrasound (IVUS) imaging face their greatest limitation in visualizing aortic disease in patients. With the aid of three-dimensional (3D) image reconstruction, TEE and IVUS can potentially overcome this limitation but still provide only limited spatial appreciation in aortic disease because 3D imaging of the thoracic aorta requires a broader spatial visualization of the mediastinum than provided by both techniques. Moreover, for timely decision making about aortic disease TEE is limited by a large probe, which requires sedation. Therefore, we developed an approach called 3D lighthouse transesophageal echocardiography (LTEE) using a thin intravascular ultrasound catheter, which provides a full circumferential (360 degree) image and requires no sedation. The purpose of this study was to compare the feasibility and accuracy of 3D TEE, 3D IVUS, and 3D LTEE for obtaining spatial visualization of the thoracic aorta to detect aortic diseases in patients. 3D image datasets were obtained for 3D LTEE by a manual pullback of a 3.3 mm thick, 10 MHz intravascular ultrasound catheter positioned in the esophagus; for 3D TEE using a conventional 15 mm thick probe; and for 3D IVUS using a 2.6 mm thick, 20 MHz intravascular ultrasound catheter. In 12 consecutive patients, three with aortic dissection (two with type III, one with type 1) and 11 with suspected atherosclerosis, we analyzed and compared spatial visualization of the thoracic aorta, 3D image quality, patient discomfort, and study time. Providing a 3D dataset of 360-degree tomographic images of the mediastinum, 3D LTEE was the only approach that allowed broad spatial visualization of the aortic arch (9 of 12 patients) with the detection of aortic dissection or atherosclerotic plaques. Spatial visualization of the aortic arch by 3D TEE was incomplete because of the relatively narrow 90-degree image sector. However, in other segments 3D image quality by 3D TEE was superior to 3D LTEE and 3D IVUS. Because of the thin catheter, patient discomfort (p < 0.0001) and examination time (p = 0.015) were significantly less for 3D LTEE compared with 3D TEE. 3D LTEE is a promising new technique for 3D imaging of the thoracic aorta and detection of aortic disease with improved spatial visualization and reduced patient discomfort compared with 3D TEE and 3D IVUS.
AB - Two-dimensional (2D) transesophageal echocardiography (TEE) and 2D intravascular ultrasound (IVUS) imaging face their greatest limitation in visualizing aortic disease in patients. With the aid of three-dimensional (3D) image reconstruction, TEE and IVUS can potentially overcome this limitation but still provide only limited spatial appreciation in aortic disease because 3D imaging of the thoracic aorta requires a broader spatial visualization of the mediastinum than provided by both techniques. Moreover, for timely decision making about aortic disease TEE is limited by a large probe, which requires sedation. Therefore, we developed an approach called 3D lighthouse transesophageal echocardiography (LTEE) using a thin intravascular ultrasound catheter, which provides a full circumferential (360 degree) image and requires no sedation. The purpose of this study was to compare the feasibility and accuracy of 3D TEE, 3D IVUS, and 3D LTEE for obtaining spatial visualization of the thoracic aorta to detect aortic diseases in patients. 3D image datasets were obtained for 3D LTEE by a manual pullback of a 3.3 mm thick, 10 MHz intravascular ultrasound catheter positioned in the esophagus; for 3D TEE using a conventional 15 mm thick probe; and for 3D IVUS using a 2.6 mm thick, 20 MHz intravascular ultrasound catheter. In 12 consecutive patients, three with aortic dissection (two with type III, one with type 1) and 11 with suspected atherosclerosis, we analyzed and compared spatial visualization of the thoracic aorta, 3D image quality, patient discomfort, and study time. Providing a 3D dataset of 360-degree tomographic images of the mediastinum, 3D LTEE was the only approach that allowed broad spatial visualization of the aortic arch (9 of 12 patients) with the detection of aortic dissection or atherosclerotic plaques. Spatial visualization of the aortic arch by 3D TEE was incomplete because of the relatively narrow 90-degree image sector. However, in other segments 3D image quality by 3D TEE was superior to 3D LTEE and 3D IVUS. Because of the thin catheter, patient discomfort (p < 0.0001) and examination time (p = 0.015) were significantly less for 3D LTEE compared with 3D TEE. 3D LTEE is a promising new technique for 3D imaging of the thoracic aorta and detection of aortic disease with improved spatial visualization and reduced patient discomfort compared with 3D TEE and 3D IVUS.
UR - http://www.scopus.com/inward/record.url?scp=0031978870&partnerID=8YFLogxK
U2 - 10.1016/S0894-7317(98)70086-0
DO - 10.1016/S0894-7317(98)70086-0
M3 - Journal articles
C2 - 9560748
AN - SCOPUS:0031978870
SN - 0894-7317
VL - 11
SP - 243
EP - 258
JO - Journal of the American Society of Echocardiography
JF - Journal of the American Society of Echocardiography
IS - 3
ER -