TY - JOUR
T1 - Theta oscillations underlie retrieval success effects in the nucleus accumbens and anterior thalamus: Evidence from human intracranial recordings
AU - Bauch, Eva M.
AU - Bunzeck, Nico
AU - Hinrichs, Hermann
AU - Schmitt, Friedhelm C.
AU - Voges, Jürgen
AU - Heinze, Hans Jochen
AU - Zaehle, Tino
PY - 2018/11/1
Y1 - 2018/11/1
N2 - Previous imaging studies independently highlighted the role of the anterior thalamus (ANT) and nucleus accumbens (NAcc) in successful memory retrieval. While these findings accord with theoretical models, the precise temporal, oscillatory and network dynamics as well as the interplay between the NAcc and ANT in successfully retrieving information from long-term memory are largely unknown. We addressed this issue by recording intracranial electroencephalography in human epilepsy patients from the NAcc (n = 5) and ANT (n = 4) during an old/new recognition test. Our findings demonstrate that differences in event-related potentials between correctly classified old (i.e., studied) and new (i.e., unstudied) images emerged in the NAcc and ANT already between 200 and 600 ms after stimulus onset. Moreover, time–frequency analyses revealed theta (4–8 Hz) power decreases for old compared to new items in the NAcc and the opposite effect in the ANT. Importantly, Granger causality analyses revealed a directional communication from ANT to NAcc suggesting that entrainment from ANT drives successful memory retrieval. Together, our findings show evidence for the notion that the NAcc and ANT receive memory signals, and that theta oscillations may serve as a mechanism to bind these distributed neural assemblies.
AB - Previous imaging studies independently highlighted the role of the anterior thalamus (ANT) and nucleus accumbens (NAcc) in successful memory retrieval. While these findings accord with theoretical models, the precise temporal, oscillatory and network dynamics as well as the interplay between the NAcc and ANT in successfully retrieving information from long-term memory are largely unknown. We addressed this issue by recording intracranial electroencephalography in human epilepsy patients from the NAcc (n = 5) and ANT (n = 4) during an old/new recognition test. Our findings demonstrate that differences in event-related potentials between correctly classified old (i.e., studied) and new (i.e., unstudied) images emerged in the NAcc and ANT already between 200 and 600 ms after stimulus onset. Moreover, time–frequency analyses revealed theta (4–8 Hz) power decreases for old compared to new items in the NAcc and the opposite effect in the ANT. Importantly, Granger causality analyses revealed a directional communication from ANT to NAcc suggesting that entrainment from ANT drives successful memory retrieval. Together, our findings show evidence for the notion that the NAcc and ANT receive memory signals, and that theta oscillations may serve as a mechanism to bind these distributed neural assemblies.
UR - http://www.scopus.com/inward/record.url?scp=85049743261&partnerID=8YFLogxK
U2 - 10.1016/j.nlm.2018.07.001
DO - 10.1016/j.nlm.2018.07.001
M3 - Journal articles
AN - SCOPUS:85049743261
VL - 155
SP - 104
EP - 112
JO - Neurobiology of Learning and Memory
JF - Neurobiology of Learning and Memory
SN - 1074-7427
ER -