Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases

Renato G.S. Chirivi*, Jos W.G. van Rosmalen, Maarten van der Linden, Maximilien Euler, Gonny Schmets, Galina Bogatkevich, Konstantinos Kambas, Jonas Hahn, Quinte Braster, Oliver Soehnlein, Markus H. Hoffmann, Helmuth H.G.van Es, Jos M.H. Raats*

*Corresponding author for this work
64 Citations (Scopus)

Abstract

Excessive release of neutrophil extracellular traps (NETs) is associated with disease severity and contributes to tissue injury, followed by severe organ damage. Pharmacological or genetic inhibition of NET release reduces pathology in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. Here, we demonstrate using a preclinical basket approach that our therapeutic anti-citrullinated protein antibody (tACPA) has broad therapeutic potential. Treatment with tACPA prevents disease symptoms in various mouse models with plausible NET-mediated pathology, including inflammatory arthritis (IA), pulmonary fibrosis, inflammatory bowel disease and sepsis. We show that citrulline residues in the N-termini of histones 2A and 4 are specific targets for therapeutic intervention, whereas antibodies against other N-terminal post-translational histone modifications have no therapeutic effects. Because citrullinated histones are generated during NET release, we investigated the ability of tACPA to inhibit NET formation. tACPA suppressed NET release from human neutrophils triggered with physiologically relevant human disease-related stimuli. Moreover, tACPA diminished NET release and potentially initiated NET uptake by macrophages in vivo, which was associated with reduced tissue damage in the joints of a chronic arthritis mouse model of IA. To our knowledge, we are the first to describe an antibody with NET-inhibiting properties and thereby propose tACPA as a drug candidate for NET-mediated inflammatory diseases, as it eliminates the noxious triggers that lead to continued inflammation and tissue damage in a multidimensional manner.

Original languageEnglish
JournalCellular and Molecular Immunology
Volume18
Issue number6
Pages (from-to)1528-1544
Number of pages17
ISSN1672-7681
DOIs
Publication statusPublished - 06.2021

Research Areas and Centers

  • Academic Focus: Center for Infection and Inflammation Research (ZIEL)
  • Centers: Center for Research on Inflammation of the Skin (CRIS)

DFG Research Classification Scheme

  • 204-05 Immunology

Fingerprint

Dive into the research topics of 'Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases'. Together they form a unique fingerprint.

Cite this