TY - JOUR
T1 - The unusual iron sulfur composition of the Acidianus ambivalens succinate dehydrogenase complex
AU - Gomes, Cláudio M.
AU - Lemos, Rita S.
AU - Teixeira, Miguel
AU - Kletzin, Arnulf
AU - Huber, Harald
AU - Stetter, Karl O.
AU - Schäfer, Günter
AU - Anemüller, Stefan
N1 - Funding Information:
This work supported by Praxis XXI (BIO-1075) and by the European Project Extremophiles as Cell Factories (Bio4-CT96-0488 to KOS and MT). CMG thanks the Programa Gulbenkian de Doutoramento em Biologia e Medicina and PRAXIS XXI (BD9793/96) for a PhD grant. J. Carita (ITQB) is acknowledged for his skilled technical assistance.
Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1999/4/21
Y1 - 1999/4/21
N2 - The succinate dehydrogenase complex of the thermoacidophilic archaeon Acidianus ambivalens was investigated kinetically and by EPR spectroscopy in its most intact form, i.e., membrane bound. Here it is shown that this respiratory complex has an unusual iron-sulfur cluster composition in respect to that of the canonical succinate dehydrogenases known. The spectroscopic studies show that center S3, the succinate responsive [3Fe-4S](1+/0) cluster of succinate dehydrogenases, is not present in membranes prepared from aerobically grown A. ambivalens, nor in partially purified complex fractions. On the other hand, EPR features associated to the remaining centers, clusters S1 ([2Fe-2S](1+/2+)) and S2 ([4Fe-4S](2+/1+)), could be observed. Similar findings were made in other archaea, namely Acidianus infernus and Sulfolobus solfataricus. Kinetic investigations showed that the A. ambivalens enzyme is reversible, capable of operating as a fumarate reductase - a required activity if this obligate autotroph performs CO2 fixation via a reductive citric acid cycle. Sequencing of the sdh operon confirmed the spectroscopic data. Center S3 ([3Fe-4S]) is indeed replaced by a second [4Fe-4S] center, by incorporation of an additional cysteine, at the cysteine cluster binding motif (CxxYxxCxxxC→CxxCxxCxxxC). Genomic analysis shows that genes encoding for succinate dehydrogenases similar to the ones here outlined are also present in bacteria, which may indicate a novel family of succinate/fumarate oxidoreductases, spread among the Archaea and Bacteria domains. Copyright (C) 1999 Elsevier Science B.V.
AB - The succinate dehydrogenase complex of the thermoacidophilic archaeon Acidianus ambivalens was investigated kinetically and by EPR spectroscopy in its most intact form, i.e., membrane bound. Here it is shown that this respiratory complex has an unusual iron-sulfur cluster composition in respect to that of the canonical succinate dehydrogenases known. The spectroscopic studies show that center S3, the succinate responsive [3Fe-4S](1+/0) cluster of succinate dehydrogenases, is not present in membranes prepared from aerobically grown A. ambivalens, nor in partially purified complex fractions. On the other hand, EPR features associated to the remaining centers, clusters S1 ([2Fe-2S](1+/2+)) and S2 ([4Fe-4S](2+/1+)), could be observed. Similar findings were made in other archaea, namely Acidianus infernus and Sulfolobus solfataricus. Kinetic investigations showed that the A. ambivalens enzyme is reversible, capable of operating as a fumarate reductase - a required activity if this obligate autotroph performs CO2 fixation via a reductive citric acid cycle. Sequencing of the sdh operon confirmed the spectroscopic data. Center S3 ([3Fe-4S]) is indeed replaced by a second [4Fe-4S] center, by incorporation of an additional cysteine, at the cysteine cluster binding motif (CxxYxxCxxxC→CxxCxxCxxxC). Genomic analysis shows that genes encoding for succinate dehydrogenases similar to the ones here outlined are also present in bacteria, which may indicate a novel family of succinate/fumarate oxidoreductases, spread among the Archaea and Bacteria domains. Copyright (C) 1999 Elsevier Science B.V.
UR - http://www.scopus.com/inward/record.url?scp=0032941787&partnerID=8YFLogxK
U2 - 10.1016/S0005-2728(99)00046-8
DO - 10.1016/S0005-2728(99)00046-8
M3 - Journal articles
C2 - 10216159
AN - SCOPUS:0032941787
SN - 0005-2728
VL - 1411
SP - 134
EP - 141
JO - Biochimica et Biophysica Acta - Bioenergetics
JF - Biochimica et Biophysica Acta - Bioenergetics
IS - 1
ER -