Abstract
Autoantibody-mediated diseases like myasthenia gravis, autoimmune hemolytic anemia and systemic lupus erythematosus represent a therapeutic challenge. In particular, long-lived plasma cells producing autoantibodies resist current therapeutic and experimental approaches. Recently, we showed that the sensitivity of myeloma cells toward proteasome inhibitors directly correlates with their immunoglobulin synthesis rates. Therefore, we hypothesized that normal plasma cells are also hypersensitive to proteasome inhibition owing to their extremely high amount of protein biosynthesis. Here we show that the proteasome inhibitor bortezomib, which is approved for the treatment of multiple myeloma, eliminates both short- and long-lived plasma cells by activation of the terminal unfolded protein response. Treatment with bortezomib depleted plasma cells producing antibodies to double-stranded DNA, eliminated autoantibody production, ameliorated glomerulonephritis and prolonged survival of two mouse strains with lupus-like disease, NZB/W F1 and MRL/lpr mice. Hence, the elimination of autoreactive plasma cells by proteasome inhibitors might represent a new treatment strategy for antibody-mediated diseases.
| Original language | English |
|---|---|
| Journal | Nature Medicine |
| Volume | 14 |
| Issue number | 7 |
| Pages (from-to) | 748-755 |
| Number of pages | 8 |
| ISSN | 1078-8956 |
| DOIs | |
| Publication status | Published - 07.2008 |
Funding
We are grateful to U. Appelt for expert cell sorting and M. Wiesener and F. Nimmerjahn for critical reading the manuscript. This work was supported by the Interdisciplinary Center for Clinical Research (project number N2) and the German Research Society (project VO673/31 and Collaborative Research Centers SFB 643; project B3, both to R.E.V.). Parts of this work were funded by an intramural grant from the ELAN fond, a Training Grant GK 592 from the German Research Society and Collaborative Research Centers SFB 423 (project Z2).
Research Areas and Centers
- Academic Focus: Center for Infection and Inflammation Research (ZIEL)