Abstract
We analysed eight monoclonal antibodies (mAbs) directed against the Mip (macrophage infectivity potentiator) protein, a virulence factor of the intracellular pathogen Legionella pneumophila. Mip belongs to the FK506-binding proteins (FKBPs) and exhibits peptidyl prolyl cis/trans isomerase (PPIase) activity. Five of the mAbs recognised epitopes in the Cterminal, FKBP-homologous domain of Mip, which is highly conserved among all Legionella species. Upon immunological binding to Mip, all but one of these mAbs caused inhibition of the PPIase activity in vitro. mAb binding to the N-terminal domain of Mip did not influence its enzymatic activity. All but one of the PPIase inhibiting mAbs were able to significantly inhibit the early establishment and initiation of an intracellular infection of the bacteria in Acanthamoeba castellanii, the natural host, and in the human phagocytic cell line U937. These data demonstrate for the first time that for the virulence-enhancing property of the L. pneumophila Mip protein, an intact active site of the enzyme is an essential requirement.
Original language | English |
---|---|
Journal | Biological Chemistry |
Volume | 384 |
Issue number | 1 |
Pages (from-to) | 125–137 |
Number of pages | 8 |
ISSN | 1431-6730 |
DOIs | |
Publication status | Published - 01.06.2005 |
Research Areas and Centers
- Academic Focus: Center for Infection and Inflammation Research (ZIEL)