Abstract

We demonstrate the genetic transformation of Chlamydia pneumoniae using a plasmid shuttle vector system which generates stable transformants. The equine C. pneumoniae N16 isolate harbors the 7.5-kb plasmid pCpnE1. We constructed the plasmid vector pRSGFPCAT-Cpn containing a pCpnE1 backbone, plus the red-shifted green fluorescent protein (RSGFP), as well as the chloramphenicol acetyltransferase (CAT) gene used for the selection of plasmid shuttle vector-bearing C. pneumoniae transformants. Using the pRSGFPCAT-Cpn plasmid construct, expression of RSGFP in koala isolate C. pneumoniae LPCoLN was demonstrated. Furthermore, we discovered that the human cardiovascular isolate C. pneumoniae CV-6 and the human community-acquired pneumonia-associated C. pneumoniae IOL-207 could also be transformed with pRSGFPCAT-Cpn. In previous studies, it was shown that Chlamydia spp. cannot be transformed when the plasmid shuttle vector is constructed from a different plasmid backbone to the homologous species. Accordingly, we confirmed that pRSGFPCAT-Cpn could not cross the species barrier in plasmidbearing and plasmid-free C. trachomatis, C. muridarum, C. caviae, C. pecorum, and C. abortus. However, contrary to our expectation, pRSGFPCAT-Cpn did transform C. felis. Furthermore, pRSGFPCAT-Cpn did not recombine with the wild-type plasmid of C. felis. Taken together, we provide for the first time an easy-to-handle transformation protocol for C. pneumoniae that results in stable transformants. In addition, the vector can cross the species barrier to C. felis, indicating the potential of horizontal pathogenic gene transfer via a plasmid.

Original languageEnglish
Article numbere00412-18
JournalmSphere
Volume3
Issue number5
DOIs
Publication statusPublished - 01.09.2018

Research Areas and Centers

  • Academic Focus: Center for Infection and Inflammation Research (ZIEL)

Fingerprint

Dive into the research topics of 'The genetic transformation of Chlamydia pneumoniae'. Together they form a unique fingerprint.

Cite this