The effect of a low radiation CT protocol on accuracy of CT guided implant migration measurement: A cadaver study

Friedrich Boettner*, Peter K. Sculco, Joseph Lipman, Gregory Saboeiro, Lisa Renner, Martin Faschingbauer

*Corresponding author for this work
3 Citations (Scopus)

Abstract

The current study compared the impact of low radiation CT protocols on the accuracy, repeatability, and inter- and intra-observer variability of implant migration studies in total hip arthroplasty. Two total hip replacements were performed in two human cadavers and six tantalum beads were inserted into the femur similar to radiostereometric analysis. Six different 28 mm heads (-3 mm, 0 mm, 2.5 mm, 5.0 mm, 7.5 mm, and 10 mm) were added to simulate five reproducible translations (maximum total point migration) of the center of the head. Three CT scans with varying levels of radiation were performed for each head position. The effective dose (mSv) was 3.8 mSv for Protocol A (standard protocol), 0.7 mSv for Protocol B and 1.6 mSv for Protocol C. Implant migration was measured in a 3-D analysis software (Geomagic Studio 7). The accuracy was 0.16 mm for CT Protocol A, 0.13 mm for Protocol B and 0.14 mm for Protocol C; The repeatability was 0.22 mm for CT Protocol A, 0.18 mm for Protocol B and 0.20 mm for Protocol C; ICC for inter observer reliability was 0.89, intra observer reliability was 0.95. The difference in accuracy between standard protocol A and the two low radiation protocols (B, C) was less than 0.05 mm. The accuracy, inter- and intra-observer reliability of all three CT protocols is comparable to radiostereometric analysis. Reducing the CT radiation exposure to numbers similar to an AP Pelvis radiograph (0.7 mSv protocol B) does not affect the accuracy of implant migration measurements. Keywords: Radiation dose, CT, migration analysis, cadaver.

Original languageEnglish
JournalJournal of Orthopaedic Research
Volume34
Issue number4
Pages (from-to)725-728
Number of pages4
ISSN0736-0266
DOIs
Publication statusPublished - 01.04.2016
Externally publishedYes

Research Areas and Centers

  • Academic Focus: Center for Brain, Behavior and Metabolism (CBBM)

Fingerprint

Dive into the research topics of 'The effect of a low radiation CT protocol on accuracy of CT guided implant migration measurement: A cadaver study'. Together they form a unique fingerprint.

Cite this