The earliest transcribed zygotic genes are short, newly evolved, and different across species

Patricia Heyn, Martin Kircher, Andreas Dahl, Janet Kelso, Pavel Tomancak*, Alex T. Kalinka, Karla M. Neugebauer

*Corresponding author for this work

Abstract

The transition from maternal to zygotic control is fundamental to the life cycle of all multicellular organisms. It is widely believed that genomes are transcriptionally inactive from fertilization until zygotic genome activation (ZGA). Thus, the earliest genes expressed probably support the rapid cell divisions that precede morphogenesis and, if so, might be evolutionarily conserved. Here, we identify the earliest zygotic transcripts in the zebrafish, Danio rerio, through metabolic labeling and purification of RNA from staged embryos. Surprisingly, the mitochondrial genome was highly active from the one-cell stage onwards, showing that significant transcriptional activity exists at fertilization. We show that 592 nuclear genes become active when cell cycles are still only 15min long, confining expression to relatively short genes. Furthermore, these zygotic genes are evolutionarily younger than those expressed at other developmental stages. Comparison of fish, fly, and mouse data revealed different sets of genes expressed at ZGA. This species specificity uncovers an evolutionary plasticity in early embryogenesis that probably confers substantial adaptive potential.

Original languageEnglish
JournalCell Reports
Volume6
Issue number2
Pages (from-to)285-292
Number of pages8
ISSN2211-1247
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'The earliest transcribed zygotic genes are short, newly evolved, and different across species'. Together they form a unique fingerprint.

Cite this