TY - JOUR
T1 - Testing Distinct Three-Dimensional Effects in Laparoscopy: A Prospective Randomized Trial Using the Lübecker Toolbox Curriculum
AU - Thomaschewski, Michael
AU - Jürgens, Thorsten
AU - Benecke, Claudia
AU - Griesmann, Anna Catherina
AU - Esnaashari, Hamed
AU - Lux, Romy
AU - Scheppan, Diana
AU - Simon, Ronja
AU - Keck, Tobias
AU - Laubert, Tilman
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Background: The use of stereoscopic laparoscopic systems in minimally invasive surgery (MIS) allows a three-dimensional (3D) view of the surgical field, which improves hand-eye coordination. Depending on the stereo base used in the construction of the endoscopes, 3D systems may differ regarding the 3D effect. Our aim was to investigate the influence of different stereo bases on the 3D effect. Methods: This was a prospective randomized study involving 42 MIS-inexperienced study participants. We evaluated two laparoscopic 3D systems with stereo bases of 2.5 mm (system A) and 3.8 mm (system B) for differences in learning MIS skills using the Lübeck Toolbox (LTB) video box trainer. We evaluated participants' performance regarding the times and repetitions required to reach each exercise's goal. After completing the final exercise ("suturing"), participants performed the exercise again using a two-dimensional (2D) representation. Additionally, we retrospectively compared our study results with a preliminary study from participants completing the LTB curriculum with a 2D system. Results: The median number of repetitions until reaching the goals for LTB exercises 1, 2, 3, and 6 for system A were: 18 (range 7-53), 24 (range 8-46), 24 (range 13-51), and 21 (range 10-46), respectively, and for system B were: 12 (range 2-30), 16 (range 6-43), 17 (range 4-47), and 15 (range 6-29), respectively (p = not significant). Changing from a 3D to a 2D representation after completing the learning curve led to a longer average time required, from 95.22 to 119.3 s (p < 0.0001), for the last exercise (exercise 6; "suturing"). When comparing the results retrospectively with the learning curves acquired with the 2D system, there was a significant reduction in the number of repetitions required to reach the LTB exercise goals for exercises 1, 3, and 6 using the 3D system. Conclusion: Stereo bases of 2.5 and 3.8 mm provide acceptable bases for designing 3D systems. Additionally, our results indicated that MIS basic skills can be learned quicker using a 3D system versus a 2D system, and that when the 3D effect is eliminated, the corresponding compensatory mechanisms must be relearned.
AB - Background: The use of stereoscopic laparoscopic systems in minimally invasive surgery (MIS) allows a three-dimensional (3D) view of the surgical field, which improves hand-eye coordination. Depending on the stereo base used in the construction of the endoscopes, 3D systems may differ regarding the 3D effect. Our aim was to investigate the influence of different stereo bases on the 3D effect. Methods: This was a prospective randomized study involving 42 MIS-inexperienced study participants. We evaluated two laparoscopic 3D systems with stereo bases of 2.5 mm (system A) and 3.8 mm (system B) for differences in learning MIS skills using the Lübeck Toolbox (LTB) video box trainer. We evaluated participants' performance regarding the times and repetitions required to reach each exercise's goal. After completing the final exercise ("suturing"), participants performed the exercise again using a two-dimensional (2D) representation. Additionally, we retrospectively compared our study results with a preliminary study from participants completing the LTB curriculum with a 2D system. Results: The median number of repetitions until reaching the goals for LTB exercises 1, 2, 3, and 6 for system A were: 18 (range 7-53), 24 (range 8-46), 24 (range 13-51), and 21 (range 10-46), respectively, and for system B were: 12 (range 2-30), 16 (range 6-43), 17 (range 4-47), and 15 (range 6-29), respectively (p = not significant). Changing from a 3D to a 2D representation after completing the learning curve led to a longer average time required, from 95.22 to 119.3 s (p < 0.0001), for the last exercise (exercise 6; "suturing"). When comparing the results retrospectively with the learning curves acquired with the 2D system, there was a significant reduction in the number of repetitions required to reach the LTB exercise goals for exercises 1, 3, and 6 using the 3D system. Conclusion: Stereo bases of 2.5 and 3.8 mm provide acceptable bases for designing 3D systems. Additionally, our results indicated that MIS basic skills can be learned quicker using a 3D system versus a 2D system, and that when the 3D effect is eliminated, the corresponding compensatory mechanisms must be relearned.
UR - http://www.scopus.com/inward/record.url?scp=85080858344&partnerID=8YFLogxK
U2 - 10.1159/000506059
DO - 10.1159/000506059
M3 - Journal articles
AN - SCOPUS:85080858344
SN - 2297-4725
VL - 36
SP - 113
EP - 122
JO - Visceral Medicine
JF - Visceral Medicine
IS - 2
ER -