TY - JOUR
T1 - Temporal discrimination threshold and blink reflex recovery cycle in cervical dystonia – two sides of the same coin?
AU - Junker, Johanna
AU - Paulus, Theresa
AU - Brandt, Valerie
AU - Weissbach, Anne
AU - Tunc, Sinem
AU - Loens, Sebastian
AU - Reilly, Richard B.
AU - Hutchinson, Michael
AU - Baumer, Tobias
PY - 2019/11
Y1 - 2019/11
N2 - Introduction: Elevated temporal discrimination thresholds (TDT) have been found in cervical dystonia (CD) and unaffected first-degree relatives, indicating autosomal dominant inheritance with reduced penetrance, serving as an endophenotype and being indicative of abnormal inhibitory processing within the brainstem-basal ganglia circuits. The blink reflex R2 recovery cycle (BRRC) is also a measure of excitability of brainstem-basal ganglia circuits, and inconsistent findings are reported in CD. The aim was to investigate TDT and BRRC in CD and evaluate its reliability as an endophenotype. Methods: 29 patients with isolated cervical dystonia (mean age: 56.1 ± 14.3, female n = 18) and 29 age- and gender-matched healthy controls (mean age: 56.0 ± 14.2, female n = 18) were evaluated using a TDT-paradigm, performed as previously described by testing visual, tactile and visual-tactile temporal discrimination thresholds, and the BRRC, investigated with electrical and air puff stimulation. Results: Mean visual-tactile (p = 0.001) and visual TDTs (p = 0.015) differed between CD and controls; tactile TDTs revealed no group differences (p = 0.232). No between group differences were found for BRRC using either electrical or air puff stimulation (p = 0.117). There was no correlation between the elevation of TDTs and the degree of BRRC-inhibition in CD. Conclusion: Our findings support the hypothesis that the TDT is an endophenotype in CD. BRRC testing did not demonstrate disinhibition of brainstem-basal ganglia circuits in CD. In contrast to TDT, the BRRC seems not to represent an endophenotype in cervical dystonia.
AB - Introduction: Elevated temporal discrimination thresholds (TDT) have been found in cervical dystonia (CD) and unaffected first-degree relatives, indicating autosomal dominant inheritance with reduced penetrance, serving as an endophenotype and being indicative of abnormal inhibitory processing within the brainstem-basal ganglia circuits. The blink reflex R2 recovery cycle (BRRC) is also a measure of excitability of brainstem-basal ganglia circuits, and inconsistent findings are reported in CD. The aim was to investigate TDT and BRRC in CD and evaluate its reliability as an endophenotype. Methods: 29 patients with isolated cervical dystonia (mean age: 56.1 ± 14.3, female n = 18) and 29 age- and gender-matched healthy controls (mean age: 56.0 ± 14.2, female n = 18) were evaluated using a TDT-paradigm, performed as previously described by testing visual, tactile and visual-tactile temporal discrimination thresholds, and the BRRC, investigated with electrical and air puff stimulation. Results: Mean visual-tactile (p = 0.001) and visual TDTs (p = 0.015) differed between CD and controls; tactile TDTs revealed no group differences (p = 0.232). No between group differences were found for BRRC using either electrical or air puff stimulation (p = 0.117). There was no correlation between the elevation of TDTs and the degree of BRRC-inhibition in CD. Conclusion: Our findings support the hypothesis that the TDT is an endophenotype in CD. BRRC testing did not demonstrate disinhibition of brainstem-basal ganglia circuits in CD. In contrast to TDT, the BRRC seems not to represent an endophenotype in cervical dystonia.
UR - http://www.scopus.com/inward/record.url?scp=85072740685&partnerID=8YFLogxK
U2 - 10.1016/j.parkreldis.2019.09.028
DO - 10.1016/j.parkreldis.2019.09.028
M3 - Journal articles
C2 - 31621616
AN - SCOPUS:85072740685
SN - 1353-8020
VL - 68
SP - 4
EP - 7
JO - Parkinsonism and Related Disorders
JF - Parkinsonism and Related Disorders
ER -