Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons

Tori Lhomme, Jerome Clasadonte, Monica Imbernon, Daniela Fernandois, Florent Sauve, Emilie Caron, Natalia da Silva Lima, Violeta Heras, Ines Martinez-Corral, Helge Mueller-Fielitz, Sowmyalakshmi Rasika, Markus Schwaninger, Ruben Nogueiras, Vincent Prevot

Abstract

Hypothalamic glucose sensing enables an organism to match energy expenditure and food intake to circulating levels of glucose, the main energy source of the brain. Here, we established that tanycytes of the arcuate nucleus of the hypothalamus, specialized glia that line the wall of the third ventricle, convert brain glucose supplies into lactate that they transmit through monocarboxylate transporters to arcuate proopiomelanocortin neurons, which integrate this signal to drive their activity and to adapt the metabolic response to meet physiological demands. Furthermore, this transmission required the formation of extensive connexin-43 gap junction-mediated metabolic networks by arcuate tanycytes. Selective suppression of either tanycytic monocarboxylate transporters or gap junctions resulted in altered feeding behavior and energy metabolism. Tanycytic intercellular communication and lactate production are thus integral to the mechanism by which hypothalamic neurons that regulate energy and glucose homeostasis efficiently perceive alterations in systemic glucose levels as a function of the physiological state of the organism.

Original languageEnglish
JournalJournal of Clinical Investigation
Volume131
Issue number18
ISSN0021-9738
DOIs
Publication statusPublished - 15.09.2021

Fingerprint

Dive into the research topics of 'Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons'. Together they form a unique fingerprint.

Cite this