Strukturierte Neuro-Fuzzy-Systeme zur adaptiven Regelung eines pneumatischen Roboterarms

Olaf Huwendiek, Werner Brockmann

Abstract

Durch Fuzzy-Regler sind eine Reihe von nichtlinearen und schwer modellierbaren Prozessen relativ einfach zu regeln. Werden sie durch eine Kombination von Expertenwissen und Lerntechniken zu Neuro-Fuzzy-Reglern erweitert, lassen sich durch Adaption auch zeitvariante Prozesse beherrschen. Gegenüber rein wissensbasierten Fuzzy-Reglern verringert Lernen auch den Entwicklungsaufwand, so daß der „knowledge-engineering-bottleneck“ reduziert wird. Neuro-Fuzzy-Regler leiden jedoch genau wie normale Fuzzy-Regler unter dem „curse-of-dimensionality“, denn die Anzahl der Regeln wächst i.d.R. exponentiell mit der Anzahl ihrer Eingänge. Im gleichen Maße steigt dann auch der Lernaufwand. Daher sind Fuzzy- und Neuro-Fuzzy-Regler nicht direkt für die Regelung komplexer Prozesse mit einer Vielzahl von Eingangssignalen geeignet. Eine Lösung dieses Problems stellen dekomponierte Neuro-Fuzzy-Systeme, wie der NetFAN-Ansatz, dar. Wie dieser in der Praxis für komplexe, sicherheitskritische Prozesse eingesetzt wird und wie sich das auf die Wissensverarbeitung auswirkt, wird in diesem Beitrag am Beispiel der adaptiven Regelung eines 2-achsigen, pneumatisch betriebenen SCARA-Typ-Roboters gezeigt.
Original languageGerman
Pages1-16
Number of pages16
Publication statusPublished - 1998
Event8.Workshop Fuzzy Control - Dortmund, Germany
Duration: 05.11.199806.11.1998

Conference

Conference8.Workshop Fuzzy Control
Country/TerritoryGermany
CityDortmund
Period05.11.9806.11.98

Cite this