TY - JOUR
T1 - SPRED
T2 - A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes
AU - Kandaswamy, Krishna Kumar
AU - Pugalenthi, Ganesan
AU - Hartmann, Enno
AU - Kalies, Kai Uwe
AU - Möller, Steffen
AU - Suganthan, P. N.
AU - Martinetz, Thomas
PY - 2010/1/15
Y1 - 2010/1/15
N2 - Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at http://www.inb.uni-luebeck.de/tools-demos/spred/spred.
AB - Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at http://www.inb.uni-luebeck.de/tools-demos/spred/spred.
UR - http://www.scopus.com/inward/record.url?scp=73949133327&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2009.12.019
DO - 10.1016/j.bbrc.2009.12.019
M3 - Journal articles
C2 - 19995554
AN - SCOPUS:73949133327
SN - 0006-291X
VL - 391
SP - 1306
EP - 1311
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 3
ER -