TY - JOUR
T1 - Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450
AU - Jung, Christiane
AU - Schünemann, Volker
AU - Lendzian, Friedhelm
AU - Trautwein, Alfred X.
AU - Contzen, Jörg
AU - Galander, Marcus
AU - Böttger, Lars H.
AU - Richter, M
AU - Barra, Anne Laure
PY - 2005/11/11
Y1 - 2005/11/11
N2 - From analogy to chloroperoxidase from Caldariomyces fumago, It is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-π-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multifrequency EPR (9.6, 94 and 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-π-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-π-cation radical, which makes it extremely difficult to trap compound I.
AB - From analogy to chloroperoxidase from Caldariomyces fumago, It is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-π-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multifrequency EPR (9.6, 94 and 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-π-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-π-cation radical, which makes it extremely difficult to trap compound I.
UR - http://www.scopus.com/inward/record.url?scp=27544478026&partnerID=8YFLogxK
U2 - 10.1515/BC.2005.120
DO - 10.1515/BC.2005.120
M3 - Journal articles
C2 - 16218876
AN - SCOPUS:27544478026
SN - 1431-6730
VL - 386
SP - 1043
EP - 1053
JO - Biological Chemistry
JF - Biological Chemistry
IS - 10
ER -