Single-molecule identification by spectrally and time-resolved fluorescence detection

Michael Prummer, Christian G. Hübner*, Bert Hecht Beate Sick, Alois Renn, Urs P. Wild

*Corresponding author for this work
55 Citations (Scopus)

Abstract

A method to identify single molecules rapidly and with high efficiency based on simple probability considerations is proposed. In principle, any property of a detected photon in a single-molecule fluorescence experiment, e.g., emission wavelength, arrival time after pulsed excitation, and polarization, can be analyzed within the framework of the outlined methodology. Monte Carlo simulations show that less than 500 photons are needed to assign an observed single molecule to one out of four species with a confidence level higher than 99.9%. We show that single dye molecules of four different dyes embedded in a polymer film can be identified with time-correlated single-photon counting spectrally resolved in two channels.

Original languageEnglish
JournalAnalytical Chemistry
Volume72
Issue number3
Pages (from-to)443-447
Number of pages5
ISSN0003-2700
DOIs
Publication statusPublished - 01.01.2000

Fingerprint

Dive into the research topics of 'Single-molecule identification by spectrally and time-resolved fluorescence detection'. Together they form a unique fingerprint.

Cite this