TY - JOUR
T1 - Simultaneous quantification of selected glycosaminoglycans by butanolysis-based derivatization and LC-SRM/MS analysis for assessing glycocalyx disruption in vitro and in vivo
AU - Matyjaszczyk-Gwarda, Karolina
AU - Kij, Agnieszka
AU - Olkowicz, Mariola
AU - Fels, Benedikt
AU - Kusche-Vihrog, Kristina
AU - Walczak, Maria
AU - Chlopicki, Stefan
N1 - Publisher Copyright:
© 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - Glycosaminoglycans (GAGs) constitute the main building blocks of the endothelial glycocalyx (GLX), and disruption of GLX initiates and promotes endothelial dysfunction. Here, we aimed to develop a novel, specific and accurate LC-SRM/MS-based method for glycosaminoglycans (GAGs) profiling. The method involved butanolysis derivatization to facilitate GAG-specific disaccharide generation and its subsequent retention in LC–reversed-phase mode followed by mass spectrometric detection performed in positive ion-selected reaction monitoring (SRM) mode. GAG contents were measured in media of endothelial cells (EA.hy926) subjected to various GAG-degrading enzymes, as well as in murine plasma and urine in apolipoprotein E/low-density lipoprotein receptor-deficient (ApoE/LDLR −/−) mice and age-matched wild-type C57BL/6 mice. Alternatively, GLX disruption was verified by atomic force microscopy (AFM)-based analysis of GLX thickness. The proposed assay to quantify GAG-specific disaccharides presented high sensitivity for each of the analytes (LLOQ: 0.05–0.1 μg/mL) as well as accuracy and precision (86.8–114.9% and 2.0–14.3%, respectively). In medium of EA.hy926 cells subjected to GAG-degrading enzymes various GAG-specific disaccharides indicating the degradation of keratan sulphate (KS), heparan sulphate (HS), chondroitin sulphate (CHS) or hyaluronan (HA) were detected as predicted based on the characteristics of individual enzyme activity. In turn, AFM-based assessment of GLX thickness was reduced to a similar extent by all single enzyme treatments, whereas the most prominent reduction of GLX thickness was detected following the enzyme mixture. Plasma measurements of GAGs revealed age- and hypercholesterolemia-dependent decrease in GAGs concentration. In summary, a novel LC-SRM/MS-based method for GAG profiling was proposed that may inform on GLX status in cell culture for both in vitro and in vivo conditions.
AB - Glycosaminoglycans (GAGs) constitute the main building blocks of the endothelial glycocalyx (GLX), and disruption of GLX initiates and promotes endothelial dysfunction. Here, we aimed to develop a novel, specific and accurate LC-SRM/MS-based method for glycosaminoglycans (GAGs) profiling. The method involved butanolysis derivatization to facilitate GAG-specific disaccharide generation and its subsequent retention in LC–reversed-phase mode followed by mass spectrometric detection performed in positive ion-selected reaction monitoring (SRM) mode. GAG contents were measured in media of endothelial cells (EA.hy926) subjected to various GAG-degrading enzymes, as well as in murine plasma and urine in apolipoprotein E/low-density lipoprotein receptor-deficient (ApoE/LDLR −/−) mice and age-matched wild-type C57BL/6 mice. Alternatively, GLX disruption was verified by atomic force microscopy (AFM)-based analysis of GLX thickness. The proposed assay to quantify GAG-specific disaccharides presented high sensitivity for each of the analytes (LLOQ: 0.05–0.1 μg/mL) as well as accuracy and precision (86.8–114.9% and 2.0–14.3%, respectively). In medium of EA.hy926 cells subjected to GAG-degrading enzymes various GAG-specific disaccharides indicating the degradation of keratan sulphate (KS), heparan sulphate (HS), chondroitin sulphate (CHS) or hyaluronan (HA) were detected as predicted based on the characteristics of individual enzyme activity. In turn, AFM-based assessment of GLX thickness was reduced to a similar extent by all single enzyme treatments, whereas the most prominent reduction of GLX thickness was detected following the enzyme mixture. Plasma measurements of GAGs revealed age- and hypercholesterolemia-dependent decrease in GAGs concentration. In summary, a novel LC-SRM/MS-based method for GAG profiling was proposed that may inform on GLX status in cell culture for both in vitro and in vivo conditions.
UR - http://www.scopus.com/inward/record.url?scp=85118586273&partnerID=8YFLogxK
U2 - 10.1016/j.talanta.2021.123008
DO - 10.1016/j.talanta.2021.123008
M3 - Journal articles
C2 - 34857342
AN - SCOPUS:85118586273
SN - 0039-9140
VL - 238
SP - 123008
JO - Talanta
JF - Talanta
IS - Pt 1
M1 - 123008
ER -