Abstract
This paper presents a novel multiresolution image segmentation method based on the discrete wavelet transform and Markov Random Field (MRF) modelling. A major contribution of this work is to add spatial scalability to the segmentation algorithm producing the same segmentation pattern at different resolutions. This property makes it applicable for scalable object-based wavelet coding. The correlation between different resolutions of pyramid is considered by a multiresolution analysis which is incorporated into the objective function of the MRF segmentation algorithm. Examining the corresponding pixels at different resolutions simultaneously enables the algorithm to directly segment the images in the YUV or similar color spaces where luminance is in full resolution and chrominance components are at half resolution. Allowing for smoothness terms in the objective function at different resolutions improves border smoothness and creates visually more pleasing objects/regions, particularly at lower resolutions where downsampling distortions are more visible. In addition to spatial scalability, the proposed algorithm outperforms the standard single and multiresolution segmentation algorithms, in both objective and subjective tests.
Original language | English |
---|---|
Title of host publication | 2005 IEEE International Conference on Electro Information Technology |
Number of pages | 6 |
Publisher | IEEE |
Publication date | 01.12.2005 |
Pages | 1-6 |
Article number | 1627039 |
ISBN (Print) | 0-7803-9232-9 |
DOIs | |
Publication status | Published - 01.12.2005 |
Event | 2005 IEEE International Conference on Electro Information Technology - Lincoln, United States Duration: 22.05.2005 → 25.05.2005 Conference number: 69325 |