Scalable Multi-Resolution Color Image Segmentation Algorithm

Fardin A. Tab, Golshsh Naghdy, Alfred Mertins

Abstract

This paper presents a novel multiresolution image segmentation method based on the discrete wavelet transform and Markov Random Field (MRF) modelling. A major contribution of this work is to add spatial scalability to the segmentation algorithm producing the same segmentation pattern at different resolutions. This property makes it applicable for scalable object-based wavelet coding. To optimize segmentation at all resolutions of the wavelet pyramid, with scalability constraint, a multiresolution analysis is incorporated into the objective function of the MRF segmentation algorithm. Examining the corresponding pixels at different resolutions simultaneously enables the algorithm to directly segment the images in the YUV or similar color spaces where luminance is in full resolution and chrominance components are at half resolution. In addition to spatial scalability, the proposed algorithm outperforms the standard single and multiresolution segmentation algorithms, in both objective and subjective tests, yielding an effective segmentation that particularly supports scalable object-based wavelet coding.

Original languageEnglish
Pages1674-1685
Number of pages12
DOIs
Publication statusPublished - 01.07.2005
EventVISUAL COMMUNICATIONS AND IMAGE PROCESSING 2005 - Beijing, China
Duration: 12.07.200515.07.2005

Conference

ConferenceVISUAL COMMUNICATIONS AND IMAGE PROCESSING 2005
Country/TerritoryChina
CityBeijing
Period12.07.0515.07.05

Fingerprint

Dive into the research topics of 'Scalable Multi-Resolution Color Image Segmentation Algorithm'. Together they form a unique fingerprint.

Cite this