Retrospective Blind MR Image Recovery with Parametrized Motion Models

Tim J. Parbs*, Anita Mӧller, Alfred Mertins

*Corresponding author for this work

Abstract

In this paper, we present an alternating retrospective MRI reconstruction framework based on a parametrized motion model. An image recovery algorithm promoting sparsity is used in tandem with a numeric parameter search to iteratively reconstruct a sharp image. Additionally, we introduce a multiresolution strategy to restrict the numeric complexity. This algorithm is then tested in conjunction with a simple motion model on simulated data and provides robust and fast reconstruction of sharp images from severely corrupted k-spaces.

Original languageEnglish
Title of host publicationBildverarbeitung für die Medizin 2019
EditorsHeinz Handels, Thomas M. Deserno, Andreas Maier, Klaus Hermann Maier-Hein, Christoph Palm, Thomas Tolxdorff
Number of pages6
PublisherSpringer Vieweg, Wiesbaden
Publication date07.02.2019
Pages140-145
ISBN (Print)978-3-658-25325-7
ISBN (Electronic)978-3-658-25326-4
DOIs
Publication statusPublished - 07.02.2019
EventWorkshop on Bildverarbeitung fur die Medizin 2019 - Lübeck, Germany
Duration: 17.03.201919.03.2019
Conference number: 224899

Fingerprint

Dive into the research topics of 'Retrospective Blind MR Image Recovery with Parametrized Motion Models'. Together they form a unique fingerprint.

Cite this