Abstract
Background: Errorless learning has advantages over errorful learning. The erroneous items produced during errorful learning compete with correct items at retrieval resulting in decreased memory performance. This interference is associated with an increased demand on executive monitoring processes. Event-related functional magnetic resonance imaging (fMRI) was used to contrast errorless and errorful learning. Learning mode was manipulated by the number of distractors during learning of face-name associations: in errorless learning only the correct name was introduced. During errorful learning either one incorrect name or two incorrect names were additionally introduced in order to modulate the interference in recognition. Results: The behavioural results showed an enhanced memory performance after errorless learning. The veridicality of recognition of the face-name associations was reflected in a left lateralized fronto-temporal-parietal network. The different learning modes were associated with modulations in left prefrontal and parietal regions. Conclusions: Errorless learning enhances memory performance as compared to errorful learning and underpins the known advantages for errorless learning. During memory retrieval different networks are engaged for specific purposes: Recognition of face-name associations engaged a lateralized fronto-temporal-parietal network and executive monitoring processes of memory engaged the left prefrontal and parietal regions.
Original language | English |
---|---|
Article number | 30 |
Journal | BMC Neuroscience |
Volume | 14 |
ISSN | 0306-4522 |
DOIs | |
Publication status | Published - 13.03.2013 |