TY - JOUR
T1 - Real-time temperature determination during retinal photocoagulation on patients
AU - Brinkmann, Ralf
AU - Koinzer, Stefan
AU - Schlott, Kerstin
AU - Ptaszynski, Lars
AU - Bever, Marco
AU - Baade, Alexander
AU - Luft, Susanne
AU - Miura, Yoko
AU - Roider, Johann
AU - Birngruber, Reginald
PY - 2012/6/1
Y1 - 2012/6/1
N2 - The induced thermal damage in retinal photocoagulation depends on the temperature increase and the time of irradiation. The temperature rise is unknown due to intraocular variations in light transmission, scattering and grade of absorption in the retinal pigment epithelium (RPE) and the choroid. Thus, in clinical practice, often stronger and deeper coagulations are applied than therapeutically needed, which can lead to extended neuroretinal damage and strong pain perception. This work focuses on an optoacoustic (OA) method to determine the temperature rise in real-time during photocoagulation by repetitively exciting thermoelastic pressure transients with nanosecond probe laser pulses, which are simultaneously applied to the treatment radiation. The temperature-dependent pressure amplitudes are non-invasively detected at the cornea with an ultrasonic transducer embedded in the contact lens. During clinical treatment, temperature courses as predicted by heat diffusion theory are observed in most cases. For laser spot diameters of 100 and 300 μm, and irradiation times of 100 and 200 ms, respectively, peak temperatures range between 70°C and 85°C for mild coagulations. The obtained data look very promising for the realization of a feedback-controlled treatment, which automatically generates preselected and reproducible coagulation strengths, unburdens the ophthalmologist from manual laser dosage, and minimizes adverse effects and pain for the patient.
AB - The induced thermal damage in retinal photocoagulation depends on the temperature increase and the time of irradiation. The temperature rise is unknown due to intraocular variations in light transmission, scattering and grade of absorption in the retinal pigment epithelium (RPE) and the choroid. Thus, in clinical practice, often stronger and deeper coagulations are applied than therapeutically needed, which can lead to extended neuroretinal damage and strong pain perception. This work focuses on an optoacoustic (OA) method to determine the temperature rise in real-time during photocoagulation by repetitively exciting thermoelastic pressure transients with nanosecond probe laser pulses, which are simultaneously applied to the treatment radiation. The temperature-dependent pressure amplitudes are non-invasively detected at the cornea with an ultrasonic transducer embedded in the contact lens. During clinical treatment, temperature courses as predicted by heat diffusion theory are observed in most cases. For laser spot diameters of 100 and 300 μm, and irradiation times of 100 and 200 ms, respectively, peak temperatures range between 70°C and 85°C for mild coagulations. The obtained data look very promising for the realization of a feedback-controlled treatment, which automatically generates preselected and reproducible coagulation strengths, unburdens the ophthalmologist from manual laser dosage, and minimizes adverse effects and pain for the patient.
UR - http://www.scopus.com/inward/record.url?scp=84868649475&partnerID=8YFLogxK
U2 - 10.1117/1.JBO.17.6.061219
DO - 10.1117/1.JBO.17.6.061219
M3 - Journal articles
C2 - 22734749
AN - SCOPUS:84868649475
SN - 1083-3668
VL - 17
JO - Journal of Biomedical Optics
JF - Journal of Biomedical Optics
IS - 6
M1 - 061219
ER -