Real-time optoacoustic temperature determination on cell cultures during heat exposure: a feasibility study

Yoko Miura*, Eric Seifert, Josua Rehra, Katharina Kern, Dirk Theisen-Kunde, Michael Denton, Ralf Brinkmann

*Corresponding author for this work

Abstract

Objective/Purpose: In order to study the effects of hyperthermia and other temperature-related effects on cells and tissues, determining the precise time/temperature course is crucial. Here we present a non-contact optoacoustic technique, which provides temperatures during heating of cultured cells with scalable temporal and spatial resolution. Methods: A thulium laser (1.94 µm) with a maximum power of 15 W quickly and efficiently heats cells in a culture dish because of low penetration depth (1/e penetration depths of 78 µm) of the radiation in water. A repetitively Q-switched holmium laser (2.1 µm) is used simultaneously to probe temperatures at different locations in the dish by using the photoacoustic effect. Due to thermoelastic expansion of water, pressure waves are emitted and measured with an ultrasonic hydrophone at the side of the dish. The amplitudes of the waves are temperature dependent and can be used to calculate the temperature/time course at any location of probing. Results: We measured temperatures of up to 55 °C with a heating power of 6 W after 10 s, and subsequent lateral temperature profiles over time. Within this profile, temperature fluctuations were found, likely owing to thermal convection and water circulation. By using cultured retinal pigment epithelial cells, it is shown that the probe laser pulses alone cause no biological damage, while immediate cell damage occurs when heating for 10 s at temperatures exceeding 45 °C. Conclusions: This method shows great potential not only as a noninvasive, non-contact method to determine temperature/time responses of cells in culture, but also for complex tissue and other materials.

Original languageEnglish
JournalInternational Journal of Hyperthermia
Volume36
Issue number1
Pages (from-to)466-472
Number of pages7
ISSN0265-6736
DOIs
Publication statusPublished - 28.03.2019

Research Areas and Centers

  • Academic Focus: Biomedical Engineering

Fingerprint

Dive into the research topics of 'Real-time optoacoustic temperature determination on cell cultures during heat exposure: a feasibility study'. Together they form a unique fingerprint.

Cite this