QCM2R: A QoS-aware cross-layered multichannel multisink routing protocol for stream based wireless sensor networks

Waqas Rehan*, Stefan Fischer, Maaz Rehan, Yasser Mawad, Shahzad Saleem

*Corresponding author for this work
2 Citations (Scopus)

Abstract

Unlike the scalar data (such as temperature, pressure and humidity), the vector data (such as image, audio and video) necessitates more stringent Quality of Service (QoS) requirements in terms of bandwidth, delay, reliability and information security. These QoS requirements can be hardly achieved in a proper fashion by using a single channel for wireless communication. However, multichannel methodology may assist in accomplishing these QoS requirements by making possible parallel communication, enhancing throughput/delivery ratio, reducing transmission delay and countering jamming attacks. Furthermore, enabling data gathering at multiple points (i.e. multisink approach) may improve QoS by handling congestion, avoiding single point of failure issue and making possible load balancing between the available routes towards the corresponding destinations. To achieve reliable communication in stream based multichannel Wireless Sensor Networks (WSNs), this work proposes a novel QoS-aware Cross-layered Multichannel Multisink Routing protocol (QCM2R) for WSNs. For substantiating the performance of QCM2R protocol, the simulations are performed in NS-2 demonstrating the performance superiority of the proposed QCM2R protocol against the counterpart in terms of network lifetime, reliability, delay and throughput.

Original languageEnglish
Article number102552
JournalJournal of Network and Computer Applications
Volume156
ISSN1084-8045
DOIs
Publication statusPublished - 15.04.2020

DFG Research Classification Scheme

  • 409-04 Operating, Communication, Database and Distributed Systems

Fingerprint

Dive into the research topics of 'QCM2R: A QoS-aware cross-layered multichannel multisink routing protocol for stream based wireless sensor networks'. Together they form a unique fingerprint.

Cite this