Abstract
The European X-ray Free Electron Laser (EuXFEL) is a complex system with many interconnected components and sensor measurements. We use factor graphs to systematically design a probabilistic fault diagnosis method for its cavity system. This approach is expandable to further subsystems and considers uncertainties from measurements and modeling. After representing a model of the cavity system in the factor graph framework, we infer marginal distributions, e. g., of the fault classes using tabulated message-passing definitions. The emerging fault diagnosis method consists of an unscented Kalman filter-based residual generator and an evaluation of the residuals using a Gaussian mixture model. We include message-passing definitions for the training of the Gaussian Mixture Model from noisy data using the expectation-maximization algorithm.
| Translated title of the contribution | Probabilistic model-based fault diagnosis for the cavities of the European XFEL |
|---|---|
| Original language | German |
| Journal | At-Automatisierungstechnik |
| Volume | 69 |
| Issue number | 6 |
| Pages (from-to) | 538-549 |
| Number of pages | 12 |
| ISSN | 0178-2312 |
| DOIs | |
| Publication status | Published - 25.06.2021 |