Probabilistic appearance models for medical image analysis

Julia Krüger*, Jan Ehrhardt, Heinz Handels

*Corresponding author for this work

Abstract

The identification of one-to-one point correspondences between image objects is one key aspect and at the same time the most challenging part of generating statistical shape and appearance models. Using probabilistic correspondences between samples instead of accurately placed landmarks for shape models [1] eliminated the need of extensive and time consuming landmark and correspondence determination, and furthermore, the dependency of the quality of the generated model on potentially wrong correspondences was reduced.

Original languageEnglish
Title of host publicationBildverarbeitung für die Medizin 2018
EditorsMaier Andreas, Thomas M. Deserno, Heinz Handels, Klaus Hermann Maier-Hein, Christoph Palm, Thomas Tolxdorff
Number of pages2
Volume1
PublisherSpringer Verlag
Publication date01.01.2018
Edition211279
Pages37-38
ISBN (Print)978-3-662-56536-0
ISBN (Electronic)978-3-662-56537-7
DOIs
Publication statusPublished - 01.01.2018
EventBildverarbeitung für die Medizin 2018 - Lehrstuhl für Mustererkennung, Erlangen, Germany
Duration: 11.03.201813.03.2018
https://www.springer.com/us/book/9783662565360
http://www.bvm-workshop.org

Fingerprint

Dive into the research topics of 'Probabilistic appearance models for medical image analysis'. Together they form a unique fingerprint.

Cite this