TY - JOUR
T1 - Prior experience with negative spectral correlations promotes information integration during auditory category learning
AU - Scharinger, Mathias
AU - Henry, Molly J.
AU - Obleser, Jonas
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013/1
Y1 - 2013/1
N2 - Complex sounds vary along a number of acoustic dimensions. These dimensions may exhibit correlations that are familiar to listeners due to their frequent occurrence in natural sounds-namely, speech. However, the precise mechanisms that enable the integration of these dimensions are not well understood. In this study, we examined the categorization of novel auditory stimuli that differed in the correlations of their acoustic dimensions, using decision bound theory. Decision bound theory assumes that stimuli are categorized on the basis of either a single dimension (rule based) or the combination of more than one dimension (information integration) and provides tools for assessing successful integration across multiple acoustic dimensions. In two experiments, we manipulated the stimulus distributions such that in Experiment 1, optimal categorization could be accomplished by either a rule-based or an information integration strategy, while in Experiment 2, optimal categorization was possible only by using an information integration strategy. In both experiments, the pattern of results demonstrated that unidimensional strategies were strongly preferred. Listeners focused on the acoustic dimension most closely related to pitch, suggesting that pitch-based categorization was given preference over timbre-based categorization. Importantly, in Experiment 2, listeners also relied on a two-dimensional information integration strategy, if there was immediate feedback. Furthermore, this strategy was used more often for distributions defined by a negative spectral correlation between stimulus dimensions, as compared with distributions with a positive correlation. These results suggest that prior experience with such correlations might shape short-term auditory category learning.
AB - Complex sounds vary along a number of acoustic dimensions. These dimensions may exhibit correlations that are familiar to listeners due to their frequent occurrence in natural sounds-namely, speech. However, the precise mechanisms that enable the integration of these dimensions are not well understood. In this study, we examined the categorization of novel auditory stimuli that differed in the correlations of their acoustic dimensions, using decision bound theory. Decision bound theory assumes that stimuli are categorized on the basis of either a single dimension (rule based) or the combination of more than one dimension (information integration) and provides tools for assessing successful integration across multiple acoustic dimensions. In two experiments, we manipulated the stimulus distributions such that in Experiment 1, optimal categorization could be accomplished by either a rule-based or an information integration strategy, while in Experiment 2, optimal categorization was possible only by using an information integration strategy. In both experiments, the pattern of results demonstrated that unidimensional strategies were strongly preferred. Listeners focused on the acoustic dimension most closely related to pitch, suggesting that pitch-based categorization was given preference over timbre-based categorization. Importantly, in Experiment 2, listeners also relied on a two-dimensional information integration strategy, if there was immediate feedback. Furthermore, this strategy was used more often for distributions defined by a negative spectral correlation between stimulus dimensions, as compared with distributions with a positive correlation. These results suggest that prior experience with such correlations might shape short-term auditory category learning.
UR - http://www.scopus.com/inward/record.url?scp=84879244885&partnerID=8YFLogxK
U2 - 10.3758/s13421-013-0294-9
DO - 10.3758/s13421-013-0294-9
M3 - Journal articles
C2 - 23354998
AN - SCOPUS:84879244885
SN - 0090-502X
VL - 41
SP - 752
EP - 768
JO - Memory and Cognition
JF - Memory and Cognition
IS - 5
ER -