TY - JOUR
T1 - Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or with Recent-Onset Depression
T2 - A Multimodal, Multisite Machine Learning Analysis
AU - Koutsouleris, Nikolaos
AU - Kambeitz-Ilankovic, Lana
AU - Ruhrmann, Stephan
AU - Rosen, Marlene
AU - Ruef, Anne
AU - Dwyer, Dominic B.
AU - Paolini, Marco
AU - Chisholm, Katharine
AU - Kambeitz, Joseph
AU - Haidl, Theresa
AU - Schmidt, André
AU - Gillam, John
AU - Schultze-Lutter, Frauke
AU - Falkai, Peter
AU - Reiser, Maximilian
AU - Riecher-Rössler, Anita
AU - Upthegrove, Rachel
AU - Hietala, Jarmo
AU - Salokangas, Raimo K.R.
AU - Pantelis, Christos
AU - Meisenzahl, Eva
AU - Wood, Stephen J.
AU - Beque, Dirk
AU - Brambilla, Paolo
AU - Borgwardt, Stefan
N1 - Publisher Copyright:
© 2018 American Medical Association. All rights reserved.
PY - 2018/11
Y1 - 2018/11
N2 - Importance: Social and occupational impairments contribute to the burden of psychosis and depression. There is a need for risk stratification tools to inform personalized functional-disability preventive strategies for individuals in at-risk and early phases of these illnesses. Objective: To determine whether predictors associated with social and role functioning can be identified in patients in clinical high-risk (CHR) states for psychosis or with recent-onset depression (ROD) using clinical, imaging-based, and combined machine learning; assess the geographic, transdiagnostic, and prognostic generalizability of machine learning and compare it with human prognostication; and explore sequential prognosis encompassing clinical and combined machine learning. Design, Setting, and Participants: This multisite naturalistic study followed up patients in CHR states, with ROD, and with recent-onset psychosis, and healthy control participants for 18 months in 7 academic early-recognition services in 5 European countries. Participants were recruited between February 2014 and May 2016, and data were analyzed from April 2017 to January 2018. ain Outcomes and Measures: Performance and generalizability of prognostic models. Results: A total of 116 individuals in CHR states (mean [SD] age, 24.0 [5.1] years; 58 [50.0%] female) and 120 patients with ROD (mean [SD] age, 26.1 [6.1] years; 65 [54.2%] female) were followed up for a mean (SD) of 329 (142) days. Machine learning predicted the 1-year social-functioning outcomes with a balanced accuracy of 76.9% of patients in CHR states and 66.2% of patients with ROD using clinical baseline data. Balanced accuracy in models using structural neuroimaging was 76.2% in patients in CHR states and 65.0% in patients with ROD, and in combined models, it was 82.7% for CHR states and 70.3% for ROD. Lower functioning before study entry was a transdiagnostic predictor. Medial prefrontal and temporo-parieto-occipital gray matter volume (GMV) reductions and cerebellar and dorsolateral prefrontal GMV increments had predictive value in the CHR group; reduced mediotemporal and increased prefrontal-perisylvian GMV had predictive value in patients with ROD. Poor prognoses were associated with increased risk of psychotic, depressive, and anxiety disorders at follow-up in patients in the CHR state but not ones with ROD. Machine learning outperformed expert prognostication. Adding neuroimaging machine learning to clinical machine learning provided a 1.9-fold increase of prognostic certainty in uncertain cases of patients in CHR states, and a 10.5-fold increase of prognostic certainty for patients with ROD. Conclusions and Relevance: Precision medicine tools could augment effective therapeutic strategies aiming at the prevention of social functioning impairments in patients with CHR states or with ROD.
AB - Importance: Social and occupational impairments contribute to the burden of psychosis and depression. There is a need for risk stratification tools to inform personalized functional-disability preventive strategies for individuals in at-risk and early phases of these illnesses. Objective: To determine whether predictors associated with social and role functioning can be identified in patients in clinical high-risk (CHR) states for psychosis or with recent-onset depression (ROD) using clinical, imaging-based, and combined machine learning; assess the geographic, transdiagnostic, and prognostic generalizability of machine learning and compare it with human prognostication; and explore sequential prognosis encompassing clinical and combined machine learning. Design, Setting, and Participants: This multisite naturalistic study followed up patients in CHR states, with ROD, and with recent-onset psychosis, and healthy control participants for 18 months in 7 academic early-recognition services in 5 European countries. Participants were recruited between February 2014 and May 2016, and data were analyzed from April 2017 to January 2018. ain Outcomes and Measures: Performance and generalizability of prognostic models. Results: A total of 116 individuals in CHR states (mean [SD] age, 24.0 [5.1] years; 58 [50.0%] female) and 120 patients with ROD (mean [SD] age, 26.1 [6.1] years; 65 [54.2%] female) were followed up for a mean (SD) of 329 (142) days. Machine learning predicted the 1-year social-functioning outcomes with a balanced accuracy of 76.9% of patients in CHR states and 66.2% of patients with ROD using clinical baseline data. Balanced accuracy in models using structural neuroimaging was 76.2% in patients in CHR states and 65.0% in patients with ROD, and in combined models, it was 82.7% for CHR states and 70.3% for ROD. Lower functioning before study entry was a transdiagnostic predictor. Medial prefrontal and temporo-parieto-occipital gray matter volume (GMV) reductions and cerebellar and dorsolateral prefrontal GMV increments had predictive value in the CHR group; reduced mediotemporal and increased prefrontal-perisylvian GMV had predictive value in patients with ROD. Poor prognoses were associated with increased risk of psychotic, depressive, and anxiety disorders at follow-up in patients in the CHR state but not ones with ROD. Machine learning outperformed expert prognostication. Adding neuroimaging machine learning to clinical machine learning provided a 1.9-fold increase of prognostic certainty in uncertain cases of patients in CHR states, and a 10.5-fold increase of prognostic certainty for patients with ROD. Conclusions and Relevance: Precision medicine tools could augment effective therapeutic strategies aiming at the prevention of social functioning impairments in patients with CHR states or with ROD.
UR - http://www.scopus.com/inward/record.url?scp=85054155287&partnerID=8YFLogxK
U2 - 10.1001/jamapsychiatry.2018.2165
DO - 10.1001/jamapsychiatry.2018.2165
M3 - Journal articles
C2 - 30267047
AN - SCOPUS:85054155287
SN - 2168-622X
VL - 75
SP - 1156
EP - 1172
JO - JAMA Psychiatry
JF - JAMA Psychiatry
IS - 11
ER -