Postural control during galvanic vestibular stimulation in patients with persistent perceptual-postural dizziness


Over the past years galvanic vestibular stimulation (GVS) has been increasingly applied to stimulate the vestibular system in health and disease, but not in patients with persistent postural-perceptual dizziness (PPPD) yet. We functionally tested motion perception thresholds and postural responses to imperceptible noisy (nGVS) and perceptible bimastoidal GVS intensities in patients with PPPD with normal vestibulo-ocular reflexes. We hypothesized that GVS destabilizes PPPD patients under simple postural conditions stronger compared to healthy controls. They were compared to healthy subjects under several conditions each with the eyes open and closed: baseline with firm platform support, standing on foam and cognitive demand (count backward). Low and high GVS intensities (range 0.8-2.8 mA) were applied according to the individual thresholds and compared with no GVS. PPPD patients showed a reduced perception threshold to GVS compared to healthy control subjects. Median postural sway speed increased with stimulus intensity and on eye closure, but there was no group difference, irrespective of the experimental condition. Romberg's ratio was consistently lower during nGVS than in all other conditions. Group-related dissociable effects were found with the eyes closed in (i) the baseline condition in which high GVS elicited higher postural sway of PPPD patients and (ii) in the foam condition, with better postural stability of PPPD patients during perceptible GVS. Group and condition differences of postural control were neither related to anxiety nor depression scores. GVS may be helpful to identify thresholds of vestibular perception and to modulate vestibulo-spinal reflexes in PPPD, with dissociable effects with respect to perceptible and imperceptible stimuli. The sway increase in the baseline of PPPD may be related to an earlier transition from open- to closed-loop mode of postural control. In contrast, the smaller sway of PPPD in the foam condition under visual deprivation is in line with the known balance improvement under more demanding postural challenges in PPPD. It is associated with a prolonged transition from open- to closed-loop postural feedback control. It could also reflect a shift of intersensory weighting with a smaller dependence on proprioceptive feedback control in PPPD patients under complex tasks. In summary, GVS discloses differences between simple and complex balance tasks in PPPD.

Original languageEnglish
JournalJournal of Neurology
Issue number5
Pages (from-to)1236-1249
Number of pages14
Publication statusPublished - 01.05.2019


Dive into the research topics of 'Postural control during galvanic vestibular stimulation in patients with persistent perceptual-postural dizziness'. Together they form a unique fingerprint.

Cite this