TY - JOUR
T1 - Pitfalls in genotypic antimicrobial susceptibility testing caused by low expression of blaKPC in Escherichia coli.
AU - Kocer, Kaan
AU - Klein, Sabrina
AU - Hildebrand, Dagmar
AU - Krall, Johannes
AU - Heeg, Klaus
AU - Boutin, Sébastien
AU - Nurjadi, Dennis
N1 - Place: England
PY - 2021/10/1
Y1 - 2021/10/1
N2 - BACKGROUND: There is a growing interest in the rapid genotypic identification of antimicrobial resistance (AMR). In routine diagnostics, we detected multiple KPC-positive Escherichia coli (KPC-Ec) with discordant phenotypic meropenem susceptibility from a single patient's blood cultures, which prompted a more thorough investigation. OBJECTIVES: We investigated the potential clinical relevance of, and the mechanism behind, discordant phenotypic and genotypic meropenem susceptibility in KPC-Ec. METHODS: WGS was used to perform a comparative analysis of the isolates' genetic characteristics and their blaKPC-2 locus. Expression of blaKPC-2 was determined by quantitative PCR and the potency of meropenem hydrolysis was determined using a semi-quantitative carbapenem inactivation method. An in vivo infection assay using Galleria mellonella was performed to assess the potential clinical relevance of KPC expression in E. coli. RESULTS: Despite the presence of blaKPC-2, three of five isolates were susceptible to meropenem (MICVITEK2 ≤ 0.25 mg/L), while two isolates were resistant (MICVITEK2 ≥ 16 mg/L). The isolates with high MICs had significantly higher blaKPC-2 expression, which corresponds to phenotypic meropenem inactivation. The genetic environment of blaKPC-2, which may impact KPC production, was identical in all isolates. In vivo infection assay with G. mellonella suggested that meropenem was effective in reducing mortality following infection with low-expressing KPC-Ec. CONCLUSIONS: Our findings clearly highlight a limitation of genotypic AMR prediction for blaKPC. For the time being, genotypic AMR prediction requires additional analysis for accurate antibiotic therapy decision-making.
AB - BACKGROUND: There is a growing interest in the rapid genotypic identification of antimicrobial resistance (AMR). In routine diagnostics, we detected multiple KPC-positive Escherichia coli (KPC-Ec) with discordant phenotypic meropenem susceptibility from a single patient's blood cultures, which prompted a more thorough investigation. OBJECTIVES: We investigated the potential clinical relevance of, and the mechanism behind, discordant phenotypic and genotypic meropenem susceptibility in KPC-Ec. METHODS: WGS was used to perform a comparative analysis of the isolates' genetic characteristics and their blaKPC-2 locus. Expression of blaKPC-2 was determined by quantitative PCR and the potency of meropenem hydrolysis was determined using a semi-quantitative carbapenem inactivation method. An in vivo infection assay using Galleria mellonella was performed to assess the potential clinical relevance of KPC expression in E. coli. RESULTS: Despite the presence of blaKPC-2, three of five isolates were susceptible to meropenem (MICVITEK2 ≤ 0.25 mg/L), while two isolates were resistant (MICVITEK2 ≥ 16 mg/L). The isolates with high MICs had significantly higher blaKPC-2 expression, which corresponds to phenotypic meropenem inactivation. The genetic environment of blaKPC-2, which may impact KPC production, was identical in all isolates. In vivo infection assay with G. mellonella suggested that meropenem was effective in reducing mortality following infection with low-expressing KPC-Ec. CONCLUSIONS: Our findings clearly highlight a limitation of genotypic AMR prediction for blaKPC. For the time being, genotypic AMR prediction requires additional analysis for accurate antibiotic therapy decision-making.
M3 - Journal articles
SN - 0305-7453
JO - Journal of Antimicrobial Chemotherapy
JF - Journal of Antimicrobial Chemotherapy
IS - 11
ER -