Abstract
Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31–4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)–mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular ‘suppressor genes’ that constrain vessel growth and gain of a vascular ‘oncogene’ that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.
| Original language | English |
|---|---|
| Journal | Nature |
| Volume | 594 |
| Issue number | 7862 |
| Pages (from-to) | 271-276 |
| Number of pages | 6 |
| ISSN | 0028-0836 |
| DOIs | |
| Publication status | Published - 10.06.2021 |
Funding
Acknowledgements We thank the members of the Kahn laboratory for thoughtful comments and advice; A. Alliance for enrolling patients; the University of Chicago PaleoCT core facility for its expertise in imaging and image quantification; the Penn CDB Microscopy Core for support with microscopy; Duke University School of Medicine for use of the Sequencing and Genomic Technologies Shared Resource for library preparation and sequencing; and K. Wood (Duke University) for providing the cell-line DNA used as a positive control in the ddPCR assay design. Flow cytometry was performed in the Duke Human Vaccine Institute Research Flow Cytometry Shared Resource Facility. These studies were supported by National Institute of Health grants R01HL094326 and R01NS100949 (to M.L.K.), P01NS092521 (M.L.K., D.A.M. and I.A.A.) the Leducq Foundation (M.L.K. and M.P.), the AHA-Allen foundation (M.L.K.), T32 HL007150 (A.A.R.), F31HL152738 (D.A.S.), F31NS115256 (C.C.H.) and F30NS100252 (A.T.T.); European Research Council (ERC) Synergy grant-2019-WATCH-810331 (to M.S.); and ERC Consolidator grant EMERGE-773047 (to M.P.).
Research Areas and Centers
- Academic Focus: Center for Brain, Behavior and Metabolism (CBBM)