TY - JOUR
T1 - Phonological manipulation between speech perception and production activates a parieto-frontal circuit
AU - Peschke, Claudia
AU - Ziegler, Wolfram
AU - Eisenberger, Juliane
AU - Baumgaertner, Annette
N1 - Funding Information:
This work was supported by a grant from the German Federal Ministry of Education and Research ( BMBF-01GW0572 ) to WZ and AB and was carried out as part of the collaborative BMBF research project “From dynamic sensorimotor interaction to conceptual representation: Deconstructing apraxia”. We thank two anonymous reviewers for their constructive comments.
PY - 2012/1/2
Y1 - 2012/1/2
N2 - Repetition has been shown to activate the so-called 'dorsal stream', a network of temporo-parieto-frontal areas subserving the mapping of acoustic speech input onto articulatory-motor representations. Among these areas, a region in the posterior Sylvian fissure at the temporo-parietal boundary (also called 'area Spt') has been suggested to play a central role particularly with increasing computational demands on phonological processing. Most of the relevant evidence stems from tasks requiring metalinguistic processing. To date, the relevance of area Spt in natural phonological operations based on implicit linguistic knowledge has not yet been investigated. We examined two types of phonological processes assumed to be lateralized differently, i.e., the processing of syllabic stress versus subsyllabic segmental processing. In two ways, subjects modified an auditorily presented pseudoword before reproducing it overtly: (a) by a prosodic manipulation involving a stress shift across syllable boundaries, (b) by a segmental manipulation involving a vowel substitution. Manipulation per se was expected to engage area Spt. Segmental compared to prosodic processing was expected to reveal predominantly left lateralized activation, while prosodic compared to segmental processing was expected to result in bilateral or right-lateralized activation. Contrary to expectation, activation in area Spt did not vary with increased phonological processing demand. Instead, area Spt was engaged regardless of whether subjects simply repeated a pseudoword or performed a phonological manipulation before reproduction. However, for both segmental and prosodic stimuli, reproduction after manipulation (compared to repetition) activated the left intraparietal sulcus and left inferior frontal cortex. We propose that these parieto-frontal regions are recruited when the task requires phonological manipulation over and above the more automated transfer of auditory into articulatory verbal codes, which appears to involve area Spt. When directly contrasted with prosodic manipulation, segmental manipulation resulted in increased activation predominantly in left inferior frontal areas. This may be due to an increased demand on phonological sequencing operations at the subsyllabic phoneme level. Contrasted with segmental manipulations, prosodic manipulation did not result in increased activation, which may be due to a lower degree of morphosyntactic and to syllable-level processing.
AB - Repetition has been shown to activate the so-called 'dorsal stream', a network of temporo-parieto-frontal areas subserving the mapping of acoustic speech input onto articulatory-motor representations. Among these areas, a region in the posterior Sylvian fissure at the temporo-parietal boundary (also called 'area Spt') has been suggested to play a central role particularly with increasing computational demands on phonological processing. Most of the relevant evidence stems from tasks requiring metalinguistic processing. To date, the relevance of area Spt in natural phonological operations based on implicit linguistic knowledge has not yet been investigated. We examined two types of phonological processes assumed to be lateralized differently, i.e., the processing of syllabic stress versus subsyllabic segmental processing. In two ways, subjects modified an auditorily presented pseudoword before reproducing it overtly: (a) by a prosodic manipulation involving a stress shift across syllable boundaries, (b) by a segmental manipulation involving a vowel substitution. Manipulation per se was expected to engage area Spt. Segmental compared to prosodic processing was expected to reveal predominantly left lateralized activation, while prosodic compared to segmental processing was expected to result in bilateral or right-lateralized activation. Contrary to expectation, activation in area Spt did not vary with increased phonological processing demand. Instead, area Spt was engaged regardless of whether subjects simply repeated a pseudoword or performed a phonological manipulation before reproduction. However, for both segmental and prosodic stimuli, reproduction after manipulation (compared to repetition) activated the left intraparietal sulcus and left inferior frontal cortex. We propose that these parieto-frontal regions are recruited when the task requires phonological manipulation over and above the more automated transfer of auditory into articulatory verbal codes, which appears to involve area Spt. When directly contrasted with prosodic manipulation, segmental manipulation resulted in increased activation predominantly in left inferior frontal areas. This may be due to an increased demand on phonological sequencing operations at the subsyllabic phoneme level. Contrasted with segmental manipulations, prosodic manipulation did not result in increased activation, which may be due to a lower degree of morphosyntactic and to syllable-level processing.
UR - http://www.scopus.com/inward/record.url?scp=80054097618&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2011.07.025
DO - 10.1016/j.neuroimage.2011.07.025
M3 - Journal articles
C2 - 21787870
AN - SCOPUS:80054097618
SN - 1053-8119
VL - 59
SP - 788
EP - 799
JO - NeuroImage
JF - NeuroImage
IS - 1
ER -