Peptide inhibitor of NF-κB translocation ameliorates experimental atherosclerosis

Beñat Mallavia, Carlota Recio, Ainhoa Oguiza, Guadalupe Ortiz-Muñoz, Iolanda Lazaro, Virginia Lopez-Parra, Oscar Lopez-Franco, Susann Gaby Schindler, Reinhard Depping, Jesus Egido, Carmen Gomez-Guerrero*

*Corresponding author for this work
39 Citations (Scopus)

Abstract

Atherosclerosis is a chronic inflammatory disease of the arterial wall. NF-κB is a major regulator of inflammation that controls the expression of many genes involved in atherogenesis. Activated NF-κB was detected in human atherosclerotic plaques, and modulation of NF-κB inflammatory activity limits disease progression in mice. Herein, we investigate the anti-inflammatory and atheroprotective effects of a cell-permeable peptide containing the NF-κB nuclear localization sequence (NLS). In vascular smooth muscle cells and macrophages, NLS peptide specifically blocked the importin α-mediated nuclear import of NF-κB and prevented lipopolysaccharide-induced pro-inflammatory gene expression, cell migration, and oxidative stress. In experimental atherosclerosis (apolipoprotein E-knockout mice fed a high-fat diet), i.p., 0.13 μmol/day NLS peptide administration for 5 weeks attenuated NF-κB activation in atherosclerotic plaques. NLS peptide significantly inhibited lesion development at both early (age 10 weeks) and advanced (age 28 weeks) stages of atherosclerosis in mice, without affecting serum lipid levels. Plaques from NLS-treated mice contained fewer macrophages of pro-inflammatory M1 subtype than those from respective untreated controls. By contrast, the relative smooth muscle cell and collagen content was increased, indicating a more stable plaque phenotype. NLS peptide also attenuated pro-inflammatory gene expression and oxidative stress in aortic lesions. Our study demonstrates that targeting NF-κB nuclear translocation hampers inflammation and atherosclerosis development and identifies cell-permeable NLS peptide as a potential anti-atherosclerotic agent.

Original languageEnglish
JournalAmerican Journal of Pathology
Volume182
Issue number5
Pages (from-to)1910-1921
Number of pages12
ISSN0002-9440
DOIs
Publication statusPublished - 05.2013

Research Areas and Centers

  • Academic Focus: Center for Brain, Behavior and Metabolism (CBBM)

Fingerprint

Dive into the research topics of 'Peptide inhibitor of NF-κB translocation ameliorates experimental atherosclerosis'. Together they form a unique fingerprint.

Cite this