TY - JOUR
T1 - Pattern Recognition in the Processing of Electromyographic Signals for Selected Expressions of Polish Sign Language
AU - Filipowska, Anna
AU - Filipowski, Wojciech
AU - Mieszczanin, Julia
AU - Bryzik, Katarzyna
AU - Henkel, Maciej
AU - Skwarek, Emilia
AU - Raif, Paweł
AU - Sieciński, Szymon
AU - Doniec, Rafal Jan
AU - Mika, Barbara
AU - Bodak, Julia
AU - Ferst, Piotr
AU - Pieniążek, Marcin
AU - Pilarski, Kamil
AU - Grzegorzek, Marcin
PY - 2024/10/18
Y1 - 2024/10/18
N2 - Gesture recognition has become a significant part of human–machine interaction, particularly when verbal interaction is not feasible. The rapid development of biomedical sensing and machine learning algorithms, including electromyography (EMG) and convolutional neural networks (CNNs), has enabled the interpretation of sign languages, including the Polish Sign Language, based on EMG signals. The objective was to classify the game control gestures and Polish Sign Language gestures recorded specifically for this study using two different data acquisition systems: BIOPAC MP36 and MyoWare 2.0. We compared the classification performance of various machine learning algorithms, with a particular emphasis on CNNs on the dataset of EMG signals representing 24 gestures, recorded using both types of EMG sensors. The results (98.324% versus ≤7.8571% and 95.5307% versus ≤10.2697% of accuracy for CNNs and other classifiers in data recorded with BIOPAC MP36 and MyoWare, respectively) indicate that CNNs demonstrate superior accuracy. These results suggest the feasibility of using lower-cost sensors for effective gesture classification and the viability of integrating affordable EMG-based technologies into broader gesture recognition frameworks, providing a cost-effective solution for real-world applications. The dataset created during the study offers a basis for future studies on EMG-based recognition of Polish Sign Language.
AB - Gesture recognition has become a significant part of human–machine interaction, particularly when verbal interaction is not feasible. The rapid development of biomedical sensing and machine learning algorithms, including electromyography (EMG) and convolutional neural networks (CNNs), has enabled the interpretation of sign languages, including the Polish Sign Language, based on EMG signals. The objective was to classify the game control gestures and Polish Sign Language gestures recorded specifically for this study using two different data acquisition systems: BIOPAC MP36 and MyoWare 2.0. We compared the classification performance of various machine learning algorithms, with a particular emphasis on CNNs on the dataset of EMG signals representing 24 gestures, recorded using both types of EMG sensors. The results (98.324% versus ≤7.8571% and 95.5307% versus ≤10.2697% of accuracy for CNNs and other classifiers in data recorded with BIOPAC MP36 and MyoWare, respectively) indicate that CNNs demonstrate superior accuracy. These results suggest the feasibility of using lower-cost sensors for effective gesture classification and the viability of integrating affordable EMG-based technologies into broader gesture recognition frameworks, providing a cost-effective solution for real-world applications. The dataset created during the study offers a basis for future studies on EMG-based recognition of Polish Sign Language.
M3 - Journal articles
SN - 1424-8220
VL - 24
JO - Sensors (Switzerland)
JF - Sensors (Switzerland)
IS - 18
M1 - 6710
ER -