Optically controlled thermal management on the nanometer length scale

F. Garwe*, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, K. König, G. Hüttmann, W. Paa, J. Popp, W. Fritzsche

*Corresponding author for this work
37 Citations (Scopus)


The manipulation of polymers and biological molecules or the control of chemical reactions on a nanometer scale by means of laser pulses shows great promise for applications in modern nanotechnology, biotechnology, molecular medicine or chemistry. A controllable, parallel, highly efficient and very local heat conversion of the incident laser light into metal nanoparticles without ablation or fragmentation provides the means for a tool like a 'nanoreactor', a 'nanowelder', a 'nanocrystallizer' or a 'nanodesorber'. In this paper we explain theoretically and show experimentally the interaction of laser radiation with gold nanoparticles on a polymethylmethacrylate (PMMA) layer (one-photon excitation) by means of different laser pulse lengths, wavelengths and pulse repetition rates. To the best of our knowledge this is the first report showing the possibility of highly local (in a 40 nm range) regulated heat insertion into the nanoparticle and its surroundings without ablation of the gold nanoparticles. In an earlier paper we showed that near-infrared femtosecond irradiation can cut labeled DNA sequences in metaphase chromosomes below the diffraction-limited spot size. Now, we use gold as well as silver-enhanced gold nanoparticles on DNA (also within chromosomes) as energy coupling objects for femtosecond laser irradiation with single-and two-photon excitation. We show the results of highly localized destruction effects on DNA that occur only nearby the nanoparticles.

Original languageEnglish
Article number055207
Issue number5
Publication statusPublished - 06.02.2008

Research Areas and Centers

  • Academic Focus: Biomedical Engineering


Dive into the research topics of 'Optically controlled thermal management on the nanometer length scale'. Together they form a unique fingerprint.

Cite this