Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods

Lars Hering*, Miriam J. Henze, Martin Kohler, Almut Kelber, Christoph Bleidorn, Maren Leschke, Birgit Nickel, Matthias Meyer, Martin Kircher, Paul Sunnucks, Georg Mayer

*Corresponding author for this work

Abstract

Multiple visual pigments, prerequisites for color vision, are found in arthropods, but the evolutionary origin of their diversity remains obscure. In this study, we explore the opsin genes in five distantly related species of Onychophora, using deep transcriptome sequencing and screening approaches. Surprisingly, our data reveal the presence of only one opsin gene (onychopsin) in each onychophoran species, and our behavioral experiments indicate a maximum sensitivity of onychopsin to blue-green light. In our phylogenetic analyses, the onychopsins represent the sister group to the monophyletic clade of visual r-opsins of arthropods. These results concur with phylogenomic support for the sister-group status of the Onychophora and Arthropoda and provide evidence for monochromatic vision in velvet worms and in the last common ancestor of Onychophora and Arthropoda. We conclude that the diversification of visual pigments and color vision evolved in arthropods, along with the evolution of compound eyes-one of the most sophisticated visual systems known.

Original languageEnglish
JournalMolecular Biology and Evolution
Volume29
Issue number11
Pages (from-to)3451-3458
Number of pages8
ISSN0737-4038
DOIs
Publication statusPublished - 11.2012

Fingerprint

Dive into the research topics of 'Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods'. Together they form a unique fingerprint.

Cite this