TY - JOUR
T1 - On a filter for exponentially localized kernels based on Jacobi polynomials
AU - Filbir, F.
AU - Mhaskar, H. N.
AU - Prestin, J.
PY - 2009/9/1
Y1 - 2009/9/1
N2 - Let α, β ≥ - frac(1, 2), and for k = 0, 1, ..., pk(α, β) denote the orthonormalized Jacobi polynomial of degree k. We discuss the construction of a matrix H so that there exist positive constants c, c1, depending only on H, α, and β such that fenced(underover(∑, k = 0, ∞) Hk, n pk(α, β) (cos θ) pk(α, β) (cos φ{symbol})) ≤ c1 n2 max (α, β) + 2 exp (- cn (θ - φ{symbol})2), θ, φ{symbol} ∈ [0, π], n = 1, 2, ... .Specializing to the case of Chebyshev polynomials, α = β = - frac(1, 2), we apply this theory to obtain a construction of an exponentially localized polynomial basis for the corresponding L2 space.
AB - Let α, β ≥ - frac(1, 2), and for k = 0, 1, ..., pk(α, β) denote the orthonormalized Jacobi polynomial of degree k. We discuss the construction of a matrix H so that there exist positive constants c, c1, depending only on H, α, and β such that fenced(underover(∑, k = 0, ∞) Hk, n pk(α, β) (cos θ) pk(α, β) (cos φ{symbol})) ≤ c1 n2 max (α, β) + 2 exp (- cn (θ - φ{symbol})2), θ, φ{symbol} ∈ [0, π], n = 1, 2, ... .Specializing to the case of Chebyshev polynomials, α = β = - frac(1, 2), we apply this theory to obtain a construction of an exponentially localized polynomial basis for the corresponding L2 space.
UR - http://www.scopus.com/inward/record.url?scp=70349817345&partnerID=8YFLogxK
U2 - 10.1016/j.jat.2009.01.004
DO - 10.1016/j.jat.2009.01.004
M3 - Journal articles
AN - SCOPUS:70349817345
SN - 0021-9045
VL - 160
SP - 256
EP - 280
JO - Journal of Approximation Theory
JF - Journal of Approximation Theory
IS - 1-2
ER -