TY - JOUR
T1 - Oleic acid in the modulation of oocyte and preimplantation embryo development
AU - Fayezi, Shabnam
AU - Leroy, Jo L.M.R.
AU - Ghaffari Novin, Marefat
AU - Darabi, Masoud
N1 - Funding Information:
This work was supported by the Drug Applied Research Center at Tabriz University of Medical Sciences (grant number #93/710) and Shahid Beheshti University of Medical Sciences (grant number #1393-1-91-13033). Shabnam Fayezi is recipient of a grant from the interdisciplinary PhD programme in the National Elites Foundation (2015–2018).
Publisher Copyright:
© Copyright Cambridge University Press 2017.
PY - 2018/2/1
Y1 - 2018/2/1
N2 - Summary Potential reproductive effects are considered as the major aspect of biomolecules functionality in an organism. The recent identification of differential patterns of fatty acids across ovarian follicles and their association with levels of sexual maturity highlights the importance of these biomolecules. It is well known that fatty acids are highly diverse in terms of their functional properties. Oleic acid is chemically classified as an unsaturated omega-9 fatty acid. Besides serving as an important energy source, oleic acid is involved in metabolic and structural roles. Free and esterified oleic acids are compartmentalized into discrete extracellular fluids, cell organelles and found within the cytosol. This review summarizes the current knowledge on the contribution of oleic acid in regulating female fertility, particularly its involvement in female germ cell growth and development. Oleic acid has been identified as a blastomeric and post-cryopreservation survival biomarker in bovine. Several related studies have shown the critical role of oleic acid in counteracting the detrimental effects of saturated fatty acids and in paracrine support of oocyte development. Although available data are not ideally detailed, most data suggest that oleic acid can contribute to normal oocyte and preimplantation embryo development via mechanisms involving metabolic partitioning of fatty acids, change in the membrane structural organization, attenuation of oxidative stress and regulation of intracellular signalling. Thus, oleic acid may play a significant role in oocyte and early embryo development, suggesting that future studies should explore in more detail its potential effects on the physiopathology of female reproduction.
AB - Summary Potential reproductive effects are considered as the major aspect of biomolecules functionality in an organism. The recent identification of differential patterns of fatty acids across ovarian follicles and their association with levels of sexual maturity highlights the importance of these biomolecules. It is well known that fatty acids are highly diverse in terms of their functional properties. Oleic acid is chemically classified as an unsaturated omega-9 fatty acid. Besides serving as an important energy source, oleic acid is involved in metabolic and structural roles. Free and esterified oleic acids are compartmentalized into discrete extracellular fluids, cell organelles and found within the cytosol. This review summarizes the current knowledge on the contribution of oleic acid in regulating female fertility, particularly its involvement in female germ cell growth and development. Oleic acid has been identified as a blastomeric and post-cryopreservation survival biomarker in bovine. Several related studies have shown the critical role of oleic acid in counteracting the detrimental effects of saturated fatty acids and in paracrine support of oocyte development. Although available data are not ideally detailed, most data suggest that oleic acid can contribute to normal oocyte and preimplantation embryo development via mechanisms involving metabolic partitioning of fatty acids, change in the membrane structural organization, attenuation of oxidative stress and regulation of intracellular signalling. Thus, oleic acid may play a significant role in oocyte and early embryo development, suggesting that future studies should explore in more detail its potential effects on the physiopathology of female reproduction.
UR - http://www.scopus.com/inward/record.url?scp=85042210395&partnerID=8YFLogxK
U2 - 10.1017/S0967199417000582
DO - 10.1017/S0967199417000582
M3 - Journal articles
C2 - 29244016
AN - SCOPUS:85042210395
SN - 0967-1994
VL - 26
SP - 1
EP - 13
JO - Zygote
JF - Zygote
IS - 1
ER -