Abstract
We introduce a new single-head multimodal optical system that integrates optical coherence tomography (OCT), 18 MHz ultrasound (US) tomography and Raman spectroscopy (RS), allowing for fast (<2 min) and noninvasive skin cancer diagnostics and lesion depth measurement. The OCT can deliver structural and depth information of smaller skin lesions (<1 mm), while the US allows to measure the penetration depth of thicker lesions (≥4 mm), and the RS analyzes the chemical composition from a small chosen spot (≤300 μm) that can be used to distinguish between benign and malignant melanoma. The RS and OCT utilize the same scanning and optical setup, allowing for co-localized measurements. The US on the other side is integrated with an acoustical reflector, which enables B-mode measurements on the same position as OCT and RS. The US B-mode scans can be translated across the sample by laterally moving the US transducer, which is made possible by the developed adapter with a flexible membrane. We present the results on custom-made liquid and agar phantoms that show the resolution and depth capabilities of the setup, as well as preliminary ex vivo measurements on mouse models with ∼4.3 mm thick melanoma.
| Original language | English |
|---|---|
| Article number | e202200129 |
| Journal | Journal of Biophotonics |
| Volume | 15 |
| Issue number | 10 |
| ISSN | 1864-063X |
| DOIs | |
| Publication status | Published - 10.2022 |
| Externally published | Yes |
Funding
Deutsche Forschungsgemeinschaft, Grant/Award Numbers: RO 3471/18‐1, EM 63/13‐1; German Research Foundation (DFG) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD, Grant/Award Number: EXC 2122, Project ID 390833453 Funding information The authors acknowledge financial support from the German Research Foundation DFG (German Research Foundation, Project ID RO 3471/18‐1 and EM 63/13‐1). Also, financial support from the German Research Foundation (DFG) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453) is acknowledged.
DFG Research Classification Scheme
- 2.22-32 Medical Physics, Biomedical Technology
- 2.22-19 Dermatology
- 2.22-14 Hematology, Oncology