TY - JOUR
T1 - Multimodal system for optical biopsy of melanoma with integrated ultrasound, optical coherence tomography and Raman spectroscopy
AU - Fedorov Kukk, Anatoly
AU - Wu, Di
AU - Gaffal, Evelyn
AU - Panzer, Rüdiger
AU - Emmert, Steffen
AU - Roth, Bernhard
N1 - Publisher Copyright:
© 2022 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH.
PY - 2022/10
Y1 - 2022/10
N2 - We introduce a new single-head multimodal optical system that integrates optical coherence tomography (OCT), 18 MHz ultrasound (US) tomography and Raman spectroscopy (RS), allowing for fast (<2 min) and noninvasive skin cancer diagnostics and lesion depth measurement. The OCT can deliver structural and depth information of smaller skin lesions (<1 mm), while the US allows to measure the penetration depth of thicker lesions (≥4 mm), and the RS analyzes the chemical composition from a small chosen spot (≤300 μm) that can be used to distinguish between benign and malignant melanoma. The RS and OCT utilize the same scanning and optical setup, allowing for co-localized measurements. The US on the other side is integrated with an acoustical reflector, which enables B-mode measurements on the same position as OCT and RS. The US B-mode scans can be translated across the sample by laterally moving the US transducer, which is made possible by the developed adapter with a flexible membrane. We present the results on custom-made liquid and agar phantoms that show the resolution and depth capabilities of the setup, as well as preliminary ex vivo measurements on mouse models with ∼4.3 mm thick melanoma.
AB - We introduce a new single-head multimodal optical system that integrates optical coherence tomography (OCT), 18 MHz ultrasound (US) tomography and Raman spectroscopy (RS), allowing for fast (<2 min) and noninvasive skin cancer diagnostics and lesion depth measurement. The OCT can deliver structural and depth information of smaller skin lesions (<1 mm), while the US allows to measure the penetration depth of thicker lesions (≥4 mm), and the RS analyzes the chemical composition from a small chosen spot (≤300 μm) that can be used to distinguish between benign and malignant melanoma. The RS and OCT utilize the same scanning and optical setup, allowing for co-localized measurements. The US on the other side is integrated with an acoustical reflector, which enables B-mode measurements on the same position as OCT and RS. The US B-mode scans can be translated across the sample by laterally moving the US transducer, which is made possible by the developed adapter with a flexible membrane. We present the results on custom-made liquid and agar phantoms that show the resolution and depth capabilities of the setup, as well as preliminary ex vivo measurements on mouse models with ∼4.3 mm thick melanoma.
UR - http://www.scopus.com/inward/record.url?scp=85135020920&partnerID=8YFLogxK
U2 - 10.1002/jbio.202200129
DO - 10.1002/jbio.202200129
M3 - Journal articles
C2 - 35802400
AN - SCOPUS:85135020920
SN - 1864-063X
VL - 15
JO - Journal of Biophotonics
JF - Journal of Biophotonics
IS - 10
M1 - e202200129
ER -