Modulation of inflammatory processes by thermal stimulating and RPE regenerative laser therapies in age related macular degeneration mouse models

Elisabeth Richert, Claus von der Burchard, Alexa Klettner, Philipp Arnold, Ralph Lucius, Ralf Brinkmann, Johann Roider, Jan Tode*

*Corresponding author for this work

Abstract

Purpose: Inflammatory processes play a major role within the multifactorial pathogenesis of age-related macular degeneration (AMD). Neuroretina sparing laser therapies, thermal stimulation of the retina (TSR) and selective retina therapy (SRT), are known to reduce AMD-like pathology in vitro and in vivo. We investigated the effect of TSR and SRT on inflammatory processes in AMD mouse models. Methods: One randomized eye of 8 months old apolipoprotein (Apo)E and 9 months old nuclear factor (erythroid-derived 2) -like 2 (NRF2) knock out mice were treated by TSR (10 ms, 532 nm, 50 µm2 spot size, mean 4.5 W, ~200 spots) or SRT (~1.4 µs pulses, 532 nm, 50 µm spot size, 100 Hz over 300 ms, mean 2.5 µJ per pulse, ~200 spots). Fellow eyes, untreated knock out mice and wild-type BL/6J mice acted as controls. All mice were examined funduscopically and by optical coherence tomography (OCT) at the day of laser treatment. Mice were euthanized and enucleated either 1 day or 7 days after laser treatment and examined by gene expression analysis of 84 inflammatory genes. Results: The inflammatory gene expression profile of both knock out models compared to healthy BL/6J mice suggests a regulation of pro- and anti-inflammatory processes especially concerning T-cell activity and immune cell recruitment. TSR resulted in downregulation of several pro-inflammatory cell-mediators both in ApoE -/- and NRF2-/- mice compared to treatment naïve litter mates one day after treatment. In contrast, SRT induced pro-inflammatory cell-mediators connected with necrosis one day after treatment as expected following laser-induced selective RPE cell death. Seven days after laser treatment, both findings were reversed. Conclusions: Both TSR and SRT influence inflammatory processes in AMD mouse models. However, they act conversely. TSR leads to anti-inflammatory processes shortly after laser therapy and induces immune-cell recruitment one week after treatment. SRT leads to a quick inflammatory response to laser induced RPE necrotic processes. One week after SRT inflammation is inhibited. It remains unclear, if and to what extent this might play a role in a therapeutic or preventive approach of both laser modalities on AMD pathology.

Original languageEnglish
Article number100031
JournalCytokine: X
Volume2
Issue number3
DOIs
Publication statusPublished - 09.2020

Research Areas and Centers

  • Academic Focus: Biomedical Engineering

Fingerprint

Dive into the research topics of 'Modulation of inflammatory processes by thermal stimulating and RPE regenerative laser therapies in age related macular degeneration mouse models'. Together they form a unique fingerprint.

Cite this