Model-Based Parameter estimation in DCE-MRI Without an Arterial Input Function

Constantin Heck, Lars Ruthotto, Jan Modersitzki, Benjamin Berkels

Abstract

Analysis of DCE-MRI data is often carried out by fitting parametric models. However, one major factor of uncertainty is the determination of the arterial input function (AIF). We introduce a novel approach to estimate kinetic parameters in DCE-MRI without an AIF. An existing method by Riabkov et al., where the AIF is introduced as an additional unknown, is extended by the addition of spatial diffusive regularization of the parameter maps and a control term for the scale of the AIF. We validate our method on artificial data, where it significantly reduces the relative error as compared to the original method by Riabkov. Additionally, we present first promising results on real data.
Original languageEnglish
Title of host publicationBildverarbeitung für die Medizin 2014
EditorsThomas Martin Deserno, Heinz Handels, Hans-Peter Meinzer, Thomas Tolxdorff
Number of pages6
Place of PublicationBerlin, Heidelberg
PublisherSpringer Berlin Heidelberg
Publication date04.03.2014
Pages246-251
ISBN (Print)978-3-642-54110-0
ISBN (Electronic)978-3-642-54111-7
DOIs
Publication statusPublished - 04.03.2014
EventWorkshop on Bildverarbeitung fur die Medizin 2014 - Aachen, Germany
Duration: 16.03.201418.03.2014

Fingerprint

Dive into the research topics of 'Model-Based Parameter estimation in DCE-MRI Without an Arterial Input Function'. Together they form a unique fingerprint.

Cite this