MiR-149 suppresses breast cancer metastasis by blocking paracrine interactions with macrophages

Ismael Sánchez-González, Anja Bobien, Christian Molnar, Simone Schmid, Michaela Strotbek, Melanie Boerries, Hauke Busch, Monilola A. Olayioye*

*Corresponding author for this work
1 Citation (Scopus)

Abstract

Paracrine activation of cells contained in the tumor microenvironment promotes tumor progression and metastasis. In breast cancer, malignant cells recruit and educate macrophages into a M2 tumor-promoting phenotype that supports the metastatic spread of cancer cells. Here, we show that miR-149 functions as a metastasis-suppressing microRNA in breast cancer cells by limiting colony-stimulating factor-1 (CSF1)-dependent recruitment and M2 polarization of macrophages. In lymph node-positive, triple-negative breast cancer (TNBC) tissues, low miR-149 expression correlated with macrophage infiltration and reduced patient survival. By directly targeting CSF1, miR-149 expression in TNBC cell lines (MDA-MB-231 and BT-549) inhibited the recruitment of human monocytic THP-1 cells and primary human macrophages. Furthermore, in macrophages cocultured with MDA-MB-231 cells expressing miR-149, epidermal growth factor (EGF) and amphiregulin expression levels were strongly reduced, resulting in reduced EGF receptor activation in the cancer cells. In vivo, lung metastases developing from orthotopic MDA-MB-231 tumors were reduced by 75% by miR-149 expression, and this was associated with impaired M2 macrophage infiltration of the primary tumors. These data suggest that miR-149 downregulation functionally contributes to breast tumor progression by recruiting macrophages to the tumor and facilitating CSF1 and EGF receptor cross-talk between cancer cells and macrophages. SIGNIFICANCE: These findings contribute to the understanding of tumor-stroma interactions by showing that miR-149 downregulation in TNBC enhances reciprocal growth factor signaling between macrophages and cancer cells, which promotes tumor progression and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/6/1330/F1.large.jpg.

Original languageEnglish
JournalCancer Research
Volume80
Issue number6
Pages (from-to)1330-1341
Number of pages12
ISSN0008-5472
DOIs
Publication statusPublished - 15.03.2020

Research Areas and Centers

  • Academic Focus: Center for Infection and Inflammation Research (ZIEL)

Fingerprint

Dive into the research topics of 'MiR-149 suppresses breast cancer metastasis by blocking paracrine interactions with macrophages'. Together they form a unique fingerprint.

Cite this