Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp-9) and effector caspases (casp-3/casp-7) and PARP in UVR-exposed HaCaT keratinocytes

T. W. Fischer, M. A. Zmijewski, J. Wortsman, A. Slominski*

*Corresponding author for this work
    81 Citations (Scopus)

    Abstract

    Melatonin is a recognized antioxidant with high potential as a protective agent in many conditions related to oxidative stress such as neurodegenerative diseases, ischemia/reperfusion syndromes, sepsis and aging. These processes may be favorably affected by melatonin through its radical scavenging properties and/or antiapoptotic activity. Also, there is increasing evidence that these effects of melatonin could be relevant in keratinocytes, the main cell population of the skin where it would contribute to protection against damage induced by ultraviolet radiation (UVR). We therefore investigated the kinetics of UVR-induced apoptosis in cultured keratinocytes characterizing the morphological and mitochondrial changes, the caspases-dependent apoptotic pathways and involvement of poly(ADP-ribose) polymerase (PARP) activation as well as the protective effects of melatonin. When irradiated with UVB radiation (50 mJ/cm2), melatonin treated, cultured keratinocytes were more confluent, showed less cell blebbing, more uniform shape and less nuclear condensation as compared to irradiated, nonmelatonin-treated controls. Preincubation with melatonin also led to normalization of the decreased UVR-induced mitochondrial membrane potential. These melatonin effects were followed by suppression of the activation of mitochondrial pathway-related initiator caspase 9 (casp-9), but not of death receptor-dependent casp-8 between 24 and 48 hr after UVR exposure. Melatonin down-regulated effector caspases (casp-3/casp-7) at 24-48 hr post-UV irradiation and reduced PARP activation at 24 hr. Thus, melatonin is particularly active in UV-irradiated keratinocytes maintaining the mitochondrial membrane potential, inhibiting the consecutive activation of the intrinsic apoptotic pathway and reducing PARP activation. In conclusion, these data provide detailed evidence for specific antiapoptotic mechanisms of melatonin in UVR-induced damage of human keratinocytes.

    Original languageEnglish
    JournalJournal of Pineal Research
    Volume44
    Issue number4
    Pages (from-to)397-407
    Number of pages11
    ISSN0742-3098
    DOIs
    Publication statusPublished - 05.2008

    Fingerprint

    Dive into the research topics of 'Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp-9) and effector caspases (casp-3/casp-7) and PARP in UVR-exposed HaCaT keratinocytes'. Together they form a unique fingerprint.

    Cite this